A NOTE ON CONVERTIBLE {0,1} MATRICES

SI-JU KIM AND TAEG-YOUNG CHOI

ABSTRACT. A square matrix A with $perA \neq 0$ is called convertible if there exists a $\{1,-1\}$ matrix H such that $perA = det(H \circ A)$ where $H \circ A$ denote the Hadamard product of H and A. In this paper, ranks of convertible $\{0,1\}$ matrices are investigated and the existence of maximal convertible matrices with its rank r for each integer r with $\left\lceil \frac{n}{2} \right\rceil \leq r \leq n$ is proved.

1. Introduction

Let $A = [a_{ij}]$ be any real matrix of order n. The permanent of A is defined by

$$per A = \sum_{\sigma \in S_n} a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$$

where S_n denotes the set of permutations of $1, 2, 3, \dots, n$. An $n \times n$ matrix A with $per A \neq 0$ is called *convertible* if there exists a $\{1, -1\}$ matrix H such that $per A = det(H \circ A)$ where $H \circ A$ denotes the Hadamard product of H and A. In this case, $H \circ A$ is called a conversion of A. A square convertible $\{0, 1\}$ matrix is called *maximal* if replacing any zero entry with a 1 results in a non-convertible matrix.

For matrices A, B of the same size, A is said to be *permutation* equivalent to B, denoted by $A \sim B$, if there are permutation matrices P, Q such that PAQ = B. If both A and B are real, we use $A \leq B$ to denote that every entry of A is less than or equal to the corresponding entry of B. An $n \times n$ matrix is called partly decomposable if it contains a $t \times (n-t)$ zero submatrix for some t > 0. Square matrices which are not partly decomposable are called fully indecomposable.

Received February 28, 1997. Revised August 16, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 53C25.

Key words and phrases: convertible, rank, permanents.

Research supported by TGRC-KOSEF.

Let $T_n = [t_{ij}]$ denote the $\{0,1\}$ matrix of size $n \times n$ with $t_{ij} = 0$ if and only if j > i + 1. For a matrix A, square or not, let $\pi(A)$ denote the number of positive entries of A. In [2], it was shown that for any $n \times n$ convertible $\{0,1\}$ matrix A with perA > 0, $\pi(A) \leq \pi(T_n) = (n^2 + 3n - 2)/2$ with equality if and only if $A \sim T_n$. In [3,4,5 and 6], the authors investigated some properties of maximal convertible matrices. In this paper, ranks of convertible $\{0,1\}$ matrices are investigated and the existence of maximal convertible matrices with its rank r for each integer r with $\lceil \frac{n}{2} \rceil \leq r \leq n$ is proved. For an $n \times n$ matrix A and for α , $\beta \subset \{1,2,\cdots,n\}$, let $A(\alpha|\beta)$ denote the submatrix obtained from A by deleting rows α and columns β and let $A[\alpha|\beta]$ denote the matrix complementary to $A(\alpha|\beta)$ in A. Let $J_{n,m}$ denote the $n \times m$ matrix all of whose entries are 1 and let E_{ij} denote the $n \times n$ matrix all of whose entries are 0 except for the (i,j) entry which is 1.

2. Ranks of Convertible {0,1} Matrices

Let $U_2 = T_2$ and let

$$U_n = \begin{pmatrix} 1 & \mathbf{a} \\ \mathbf{b} & U_{n-1} \end{pmatrix}$$

for $n \geq 3$ where

$$\mathbf{a} = (1, \frac{1 + (-1)^n}{2}, 0, \dots, 0), \ \mathbf{b} = (1, \frac{1 - (-1)^n}{2}, 0, \dots, 0)^T.$$

Then U_n is convertible and it is easy to show that the rank of U_n is $\lceil \frac{n}{2} \rceil$ where $\lceil x \rceil$ denotes the smallest integer not less than x. Hence the minimum rank of $n \times n$ convertible $\{0,1\}$ matrices is not more than $\lceil \frac{n}{2} \rceil$. If $\{0,1\}$ matrix A of size $n \times n$ with perA > 0 is of rank 1, then $A = J_{n,n}$. However $J_{n,n}$ is not convertible for $n \geq 3$. Thus we ask a question about the minimum rank of square convertible $\{0,1\}$ matrices with positive permanents. Let r(A) denote the rank of a matrix A.

PROBLEM. If A is a $n \times n$ convertible $\{0,1\}$ matrix with perA > 0, then $r(A) \geq \lceil \frac{n}{2} \rceil$?

Let $A = [\mathbf{a}_1, \dots, \mathbf{a}_n]$ be a convertible $\{0, 1\}$ matrix of order n. Then for $k \in \{1, 2, \dots, n\}$,

$$B = \begin{pmatrix} 1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ \mathbf{a}_k & \mathbf{a}_1 & \cdots & \mathbf{a}_{k-1} & \mathbf{a}_k & \mathbf{a}_{k+1} & \cdots & \mathbf{a}_n \end{pmatrix}$$

is a convertible matrix of order n+1. A convertible matrix C is called a column expansion of convertible matrix A if C=PBQ for some permutation matrices P, Q. A row expansion of a convertible matrix is similarly defined. A matrix is called an *expansion* of convertible matrix A if it is a row expansion or a column expansion of A. Let \mathcal{A}_n be the set of all $n \times n$ convertible $\{0,1\}$ matrices A with the minimum rank and perA > 0.

THEOREM 2.1. Let $A \in \mathcal{A}_n$ and $B \in \mathcal{A}_{n+1}$. Then r(B) = r(A) or r(B) = r(A) + 1.

PROOF. Since B is a $\{0,1\}$ matrix with perB>0, we may assume that

$$B = egin{pmatrix} 1 & & * & \ & & & \ * & & C \end{pmatrix}$$

where perC > 0. Then C is a $n \times n$ convertible matrix. Hence $r(B) \ge r(C) \ge r(A)$. Consider an expansion A^e of A. Then A^e is also $(n+1) \times (n+1)$ convertible matrix. Thus $r(A^e) \ge r(B)$ but $r(A^e) = r(A)$ or $r(A^e) = r(A) + 1$. Hence r(B) = r(A) or r(B) = r(A) + 1.

Two vectors $\mathbf{x} = (x_1, \dots, x_n)$, $\mathbf{y} = (y_1, \dots, y_n)$ are said to have *same zero patterns* if $x_i = 0$ implies $y_i = 0$, and vice versa. Otherwise the two vectors \mathbf{x} and \mathbf{y} are said to have *different zero patterns*.

LEMMA 2.2. Let A be an $n \times n$ $\{0,1\}$ matrix with perA > 0. If the number of rows of different zero patterns in A is less than $\lceil \frac{n}{2} \rceil$, then A is not convertible.

PROOF. Suppose that A is convertible. Let $A^T = [\mathbf{a}_1^T, \dots, \mathbf{a}_n^T]$. Without loss of generality, we may assume that $\mathbf{a}_1, \dots, \mathbf{a}_r$ are the rows of different zero patterns in A. Then $r(A) \leq r < \lceil \frac{n}{2} \rceil$. This implies that A has at least three identical rows, say, $\mathbf{a}_1, \mathbf{a}_s, \mathbf{a}_t$. Since perA > 0,

there exists $\sigma \in S_n$ such that $\prod_{i=1}^n a_{i\sigma(i)} > 0$ and the number of nonzero entries in \mathbf{a}_1 is not less than 3. Since $perA(1, s, t | \sigma(1), \sigma(s), \sigma(t)) > 0$, $A[1, s, t | \sigma(1), \sigma(s), \sigma(t)] = J_3$ is convertible, which is impossible. \square

Two vectors $\mathbf{x}=(x_1,\cdots,x_n)$ and $\mathbf{y}=(y_1,\cdots,y_n)$ are said to be disjoint if $x_i\neq 0$ implies $y_i=0$ and vice versa for all $i=1,2,\cdots,n$.

THEOREM 2.3. Let A be an $n \times n$ $\{0,1\}$ matrix having identity matrix I_k of order k as a submatrix and perA > 0. If A is convertible with r(A) = k, then $k \ge \lceil \frac{n}{2} \rceil$.

PROOF. Without loss of generality, we may assume that A is of the form

$$A = \begin{pmatrix} I_k & B \\ C_1 & C_2 \end{pmatrix}.$$

Suppose that that $k < \lceil \frac{n}{2} \rceil$. Since r(A) = k, any row of $C = [C_1, C_2]$ is a linear combination of the first k rows of A. Since the first k rows of A contains I_k , any row of C is a linear combination of the first k rows of A such that each component scalar is 1. That is, $\mathbf{a}_i = \mathbf{a}_{i_1} + \mathbf{a}_{i_2} + \cdots + \mathbf{a}_{i_p}$ where $1 \le i_1 < i_2 < \cdots < i_p \le k$ for all $i = k+1, \cdots, n$. Since A is $\{0,1\}$ matrix, the corresponding rows $\mathbf{a}_{i_1}, \cdots, \mathbf{a}_{i_p}$ are disjoint. Let D be an $n \times n$ $\{0,1\}$ matrix such that $D[1,2,\cdots,k|1,2,\cdots,n] = A[1,2,\cdots,k|1,2,\cdots,n]$ and choose i-th row \mathbf{d}_i of D as one of $\mathbf{a}_{i_1}, \cdots, \mathbf{a}_{i_p}$ for all $i = k+1, \cdots, n$ such that perD > 0. Then $D \le A$ and the number of rows of different zero patterns in D is $k < \lceil \frac{n}{2} \rceil$. By Lemma 2.2, D is not convertible. Hence A is not convertible.

Let $P_n = [p_{ij}]$ be the permutation matrix of order n such that $p_{ij} = 1$ if and only if $(i, j) \in \{(1, 2), (2, 3), \dots, (n - 1, n), (n, 1)\}$. Recall that an $n \times n$ nonnegative matrix A is doubly indecomposable if perA(i, j|k, l) > 0 for all i, j, k and l.

Lemma 2.4. For $n \geq 3$, $W_n = \begin{pmatrix} J_{n-1,1} & I_{n-1} + P_{n-1} \\ 0 & J_{1,n-1} \end{pmatrix}$ is a maximal convertible matrix and $perW_n = (n-1)^2$.

PROOF. Let

$$H = \begin{cases} J_{n,n} - 2(\sum_{k=1}^{n/2-1} E_{2k,1} + \sum_{k=2}^{n/2} E_{n,2k} + E_{1,2}) & \text{if } n \text{ is even} \\ \\ J_{n,n} - 2(\sum_{k=1}^{(n-1)/2} E_{2k,1} + \sum_{k=1}^{(n-1)/2} E_{n,2k}) & \text{if } n \text{ is odd.} \end{cases}$$

It is easy to prove that $perW_n = det(H \circ W_n) = (n-1)^2$. Maximality of W_n comes from the fact that a doubly indecomposable convertible $\{0,1\}$ matrix doesn't have a $J_{2,3}$ or $J_{3,2}$ as its submatrix.

Notice that in Lemma 2.4,

$$det(A) = \left\{ egin{array}{ll} n-1 & ext{if n is even} \\ 0 & ext{if n is odd.} \end{array} \right.$$

For $\{0,1\}$ matrices

$$A = \begin{pmatrix} A_1 & \mathbf{a}_2 \\ \mathbf{a}_1 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & \mathbf{b}_2 \\ \mathbf{b}_1 & B_1 \end{pmatrix}$,

let

$$A \star B = \begin{pmatrix} A_1 & \mathbf{a}_2 & \mathbf{O} \\ \mathbf{a}_1 & 1 & \mathbf{b}_2 \\ \mathbf{b}_1 \mathbf{a}_1 & \mathbf{b}_1 & B_1 \end{pmatrix}.$$

LEMMA 2.5. Let A and B be maximal convertible matrices. Then $A \star B$ is a maximal convertible matrix.

PROOF. Let the sizes of A and B be $k \times k$ and $l \times l$ respectively.

Expanding the permanent of $A \star B = C = [c_{ij}]$ by k-th row, we have

$$\begin{split} perC &= \sum_{j=1}^{k+l-1} c_{kj} perC(k|j) = \sum_{j=1}^{k} c_{kj} perC(k|j) \\ &+ \sum_{j=k+1}^{k+l-1} c_{kj} perC(k|j) = \sum_{j=1}^{k} a_{kj} perA(k|j) perB(1|1) \\ &+ perA \sum_{j=k+1}^{k+l-1} c_{kj} \sum_{p=k+1}^{k+l-1} c_{pk} perB(1,p-k+1|1,j-k+1) \\ &= perA\{perB(1|1) + \sum_{j=2}^{l} b_{1j} \sum_{p=2}^{l} b_{p1} perB(1,p|1,j)\} \\ &= perA\{perB(1|1) + \sum_{j=2}^{l} b_{1j} perB(1|j)\} \\ &= perA \cdot perB. \end{split}$$

Let $H = [h_{ij}]$ and $K = [k_{ij}]$ be converters of A and B with $h_{kk} = k_{11} = k_{21} = \cdots = k_{l1} = 1$ respectively and let $L = H \star K$. We write $A^* = [a_{ij}^*] = H \circ A$, $B^* = [b_{ij}^*] = K \circ B$ and $C^* = [c_{ij}^*] = L \circ C$.

For j with $k+1 \le j \le k+l-1$, expanding $detC^*(k|j)$ by the first k columns, we have

$$\begin{split} det C^*(k|j) &= det A^* \sum_{p=k+1}^{k+l-1} (-1)^{k+p} c_{pk}^* det B^*(1, p-k+1|1, j-k+1) \\ &= det A^* \sum_{s=2}^{l} (-1)^{s+1} b_{s1}^* det B^*(1, s|1, j-k+1) \\ &= det A^* \cdot det B^*(1|j-k+1). \end{split}$$

Thus

$$\begin{split} \det C^* &= \sum_{j=1}^{k+l} (-1)^{k+j} c_{kj}^* \det C^*(k|j) = \sum_{j=1}^{k} (-1)^{k+j} c_{kj}^* \det C^*(k|j) \\ &+ \sum_{j=k+1}^{k+l-1} (-1)^{k+j} c_{kj}^* \det C^*(k|j) = \sum_{j=1}^{k} (-1)^{k+j} a_{kj}^* \det A^*(k|j) \det B^*(1|1) \\ &+ \sum_{j=k+1}^{k+l-1} (-1)^{k+j} c_{kj}^* (\det A^* \cdot \det B^*(1|j-k+1)) \\ &= \det A^* (\det B^*(1|1) + \sum_{t=2}^{l} (-1)^{t+1} b_{1t}^* \det B^*(1|t)) \\ &= \det A^* \cdot \det B^* = \operatorname{per} A \cdot \operatorname{per} B = \operatorname{per} C. \end{split}$$

Hence C is a convertible matrix. To prove the maximality of C, it is sufficient to show that $C+E_{ij}$ is not convertible for $1 \leq i < k$, $k < j \leq n$ since A and B are maximal convertible matrices. Suppose that $C+E_{ij}$ is convertible for some i, j with $1 \leq i < k$, $k < j \leq n$. Without loss of generality, we may assume that i=1 and j=n. Since C is fully indecomposable, perC(1|n)>0. Hence there exists $\sigma \in S_{n-1}$ such that $c_{2\sigma(2)}c_{3\sigma(3)}\cdots c_{n\sigma(n)}=1$ and $C[i,j|\sigma(i),\sigma(j)]=J_2$ for some i,j with $k \leq i,j \leq n$ and $1 \leq \sigma(i),\sigma(j) \leq k$. Also we have a converter L' of $C+E_{1n}$ satisfying $L'[i,j|\sigma(i),\sigma(j)]=J_2$. This means $L'[i,j|\sigma(i),\sigma(j)]=J_2$ is a converter of the convertible matrix $C[i,j|\sigma(i),\sigma(j)]=J_2$, which is impossible. Hence $C+E_{1n}$ is not convertible.

THEOREM 2.6. There exists a maximal convertible matrix A such that r(A) = n if $n \ge 4(n \ne 5)$.

PROOF. If n is even, take the matrix W_n in Lemma 2.4. Then $r(W_n) = n$. If n is odd, let $A = W_{n-3} * (J_{4,4} - \sum_{i=1}^4 E_{i,5-i})$. Then A is a maximal convertible matrix by Lemma 2.5 and

$$det(A) = det(W_{n-3})det\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix})$$

$$= (n-4) \cdot (-3) \neq 0.$$

Hence r(A) = n.

It is easy to show that every 3×3 maximal convertible matrix is permutation equivalent to T_3 whose rank is 2. By using the well-known fact([1]) that $3n \le \pi(A) \le (n^2 + 3n - 2)/2$ for any maximal convertible $n \times n$ matrix A, we can show that every 5×5 maximal convertible matrix which has no two identical rows (or columns) is permutation equivalent to W_5 in Lemma 2.4. In fact $r(W_5) \ne 5$. Hence there are no maximal convertible $n \times n$ matrices A with r(A) = n for n = 3, 5.

THEOREM 2.7. For any integer s with $\lceil \frac{n}{2} \rceil \le s \le n$, there exists an $n \times n$ maximal convertible matrix A such that r(A) = s, $n \ge 4(n \ne 5)$.

PROOF. Let $T_k = [t_{ij}]$ be the lower Hessenberg matrix of order k, i.e., $t_{ij} = 0$ if and only if $i + j \ge k$. Then $r(T_k) = k - 1$. Inductively define a sequence of maximal convertible matrices M_k, \dots, M_n as follows: Let $M_k = T_k$ and

$$M_{k+t} = \begin{pmatrix} 1 & \mathbf{a} \\ \mathbf{b} & M_{k+t-1} \end{pmatrix}$$

where $\mathbf{a}=(1,\frac{1-(-1)^t}{2},0,\cdots,0)$ and $\mathbf{b}=(1,\frac{1+(-1)^t}{2},0,\cdots,0)$. Notice that M_n is an $n\times n$ maximal convertible matrix such that $r(M_n)=k-1+\lfloor\frac{n-k}{2}\rfloor$. For any integer s with $\lceil\frac{n}{2}\rceil\leq s< n$, let k=2s-n+2 or k=2s-n+3. Then $r(M_n)=s$. Hence the result comes from this fact and Theorem 2.6.

References

- [1] R. A. Brualdi and B. L. Shader, On sign-nonsingular matrices and the conversion of the permanent into the determinant, Applied Geometry and Discrete Mathematics 4 (1991), 117-134.
- [2] P. M. Gibson, Conversion of the permanent into the determinant, Proc. Amer. Math. Soc. 27 (1971), 471-476.
- [3] S. G Hwang and S. J. Kim, On convertible nonnegative matrices, Lin. Multilin. Alg. 32 (1992), 311-318.
- [4] S. G Hwang, S. J. Kim and S. Z. Song, On maximal convertible matrices, Lin. Multilin. Alg. 38 (1995), 171-176.
- [5] _____, On convertible complex matrices, Lin. Alg. Appl. 233 (1996), 167-173.

[6] S. J. Kim, Some remarks on extremal convertible matrices, Bull. Korean Math. Soc. 29 (1992), 315-323.

Department of mathematic education Andong university Andong 760-749, korea