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F-RATIONALITY OF A PURE
SUBRING OF AN F-RATIONAL RING

Myung IN MooON

ABSTRACT. In this paper we will show that the pure subring R of
an F-rational ring S is F-rational when R is a one-dimensional ring,
or S is a Gorenstein ring. And we will give a condition that a pure
subring of an F-rational ring is to be F-rational.

1. Introduction

M. Hochster and C. Huneke introduced the notions of the tight closure
of an ideal and of the weak F-regularity of a ring, and more. Tight
closure theory has produced a host of new results and improvements
of old results. The applications include invariant theory, the Briangon-
Skoda theorem and improved version of the so-called “local homological
conjectures” (these conjectures have been proved, for the most part).
However, recently M. Hochster gave a list of selected open questions
related to the tight closure theory in his paper “Tight closure in equal
characteristic, big Cohen-Macaulay algebras, and solid closure [3].” In
this paper we will study about the following question in Hochster’s list.

“Is a pure subring of an F-rational ring F-rational?”

In fact, we can prove that the above question is affirmative in special
cases.

2. Main Theorem

All rings are commutative, with identity, and Noetherian of positive
prime characteristic p, unless otherwise specified.
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DEFINITION 2.1 [HOCHSTER-HUNEKE]. Let I be an ideal of R and
R’ denote the complement of the union of the minimal prime ideals of
R. We say that « € I*, the tight closure of I, if there exists ¢ € R° such
that for all € >> 0, cz? € 19 where 19 = (a9 : g € I) when g = p®. If
I'=1I, then I is called tightly closed . R is called weakly F -regular if all
ideals are tightly closed and R is F-regular if all of its localizations are
weakly F-regular.

In (1], R. Fedder and K. Watanabe define the weak notion of the weak
F-regularity. Here we recall that an ideal I is called a parameter ideal
for every prime p containing I, I R, is generated by part of a system of
parameters for local ring R,,.

DEFINITION 2.2 [FEDDER-WATANABE]. A ring is called F-rational if
all parameter ideals are tightly closed.

It is known that if some parameter ideal in a Cohen-Macaulay local
ring R is tightly closed, then R is F-rational [1).

In 2], M. Hochster and C. Huneke proved the following:

THEOREM 2.3. Let R C S be noetherian rings of characteristic P
such that every ideal of R is contracted from S and R° C S°. If S is
F-regular or weakly F-regular, then R has the same property.

PROOF. See Proposition 4.11 of [2]. O

But we don’t know whether the theorem still holds when weak F-
regularity is replaced by F-rationality. In fact, Hochster suggested the
following question in his paper [3].

QUESTION [3]. Is a pure subring R of an F-rational ring S F-rational?

We can answer this question in the case that the dimR=1 or S is a
Gorenstein ring,.

LEMMA 2.4. Let R,S be Noetherian rings of characteristic p. Sup-
pose h is a homomorphism from R to S. If h(R°) C S° (which is
equivalent to the assertion that every minimal prime of S contracts to a
minimal prime of R), then we have the following:
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(a) If I C R, then h(I*) C (IS)*
(b) If J is tightly closed in S, its contraction to R is tightly closed in
R.

PROOF. To see (a), note that ¢ € R° and cz? € I'% for all ¢ > 0 im-
plies that A(c) € S° and h(c)h(z)? € (IS)d for all ¢ > o.
(b) is immediate from (a). O

THEOREM 2.5. Let R be a pure subring of a module-finite F-rational
ring S. If either dim R=1, or S is Gorenstein, then R is also F-rational.

PROOF. We may assume that R is a normal local domain by the
purity [4, Lemma 6.2 and Proposition 6.15]. First, we may assume that
dim R=1. Let x be a nonzero element in R. Then S is also nonzero in
S and so z§ is a principal ideal of height one. Then 5 is tightly closed
by the F-rationality of S. Thus xR is also tightly closed by Lemma 2.4.
Hence R is F-rational in this case. If S is Gorenstein, then every ideal
of S is tightly closed. Thus every parameter ideal of R is tightly closed
by Lemma 2.4. So R is also F-rational. O

But we need some additional conditions that Theorem 2.5 still holds
for the general case.

THEOREM 2.6. Let the local ring (R, m) be pure in the module-finite
overring (S, M). If the unique maximal ideal M of S is minimal over
mS, and S is F-rational, then R is also F-rational.

PROOF. We may assume that R is a domain [4, Proposition 6.15].
Then R° C S° holds in this case. Let I be an ideal generated by any
system of parameters for R. It suffices to show that I = I*. Since M
is minimal over mS and S is module-finite over R, IS is a parameter
ideal for S. Then IS is tightly closed in S by the F-rationality of S.
Since R is S-pure, every ideal is contracted from S by Lemma 2.4. So
(IS)*NR=1. But

(ISY*NRDO>I*SNR=1I".

Hence I = I'* and R is F-rational. a
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