F-RATIONALITY OF A PURE SUBRING OF AN F-RATIONAL RING

MYUNG IN MOON

ABSTRACT. In this paper we will show that the pure subring R of an F-rational ring S is F-rational when R is a one-dimensional ring, or S is a Gorenstein ring. And we will give a condition that a pure subring of an F-rational ring is to be F-rational.

1. Introduction

M. Hochster and C. Huneke introduced the notions of the tight closure of an ideal and of the weak F-regularity of a ring, and more. Tight closure theory has produced a host of new results and improvements of old results. The applications include invariant theory, the Briançon-Skoda theorem and improved version of the so-called "local homological conjectures" (these conjectures have been proved, for the most part). However, recently M. Hochster gave a list of selected open questions related to the tight closure theory in his paper "Tight closure in equal characteristic, big Cohen-Macaulay algebras, and solid closure [3]." In this paper we will study about the following question in Hochster's list.

"Is a pure subring of an F-rational ring F-rational?" In fact, we can prove that the above question is affirmative in special cases.

2. Main Theorem

All rings are commutative, with identity, and Noetherian of positive prime characteristic p, unless otherwise specified.

Received April 10, 1997. Revised October 7, 1997.

1991 Mathematics Subject Classification: 13A35.

Key words and phrases: F-rationality, purity, tight closure, parameter ideal.

DEFINITION 2.1 [HOCHSTER-HUNEKE]. Let I be an ideal of R and R^o denote the complement of the union of the minimal prime ideals of R. We say that $x \in I^*$, the tight closure of I, if there exists $c \in R^o$ such that for all $e \gg 0$, $cx^q \in I^{[q]}$ where $I^{[q]} = (a^q : a \in I)$ when $q = p^e$. If $I = I^*$, then I is called tightly closed. R is called weakly F-regular if all ideals are tightly closed and R is F-regular if all of its localizations are weakly F-regular.

In [1], R. Fedder and K. Watanabe define the weak notion of the weak F-regularity. Here we recall that an ideal I is called a *parameter ideal* for every prime p containing I, IR_p is generated by part of a system of parameters for local ring R_p .

Definition 2.2 [Fedder-Watanabe]. A ring is called F-rational if all parameter ideals are tightly closed.

It is known that if some parameter ideal in a Cohen-Macaulay local ring R is tightly closed, then R is F-rational [1].

In [2], M. Hochster and C. Huneke proved the following:

THEOREM 2.3. Let $R \subseteq S$ be noetherian rings of characteristic p such that every ideal of R is contracted from S and $R^o \subseteq S^o$. If S is F-regular or weakly F-regular, then R has the same property.

PROOF. See Proposition 4.11 of [2].

But we don't know whether the theorem still holds when weak F-regularity is replaced by F-rationality. In fact, Hochster suggested the following question in his paper [3].

QUESTION [3]. Is a pure subring R of an F-rational ring S F-rational?

We can answer this question in the case that the $\dim R=1$ or S is a Gorenstein ring.

LEMMA 2.4. Let R, S be Noetherian rings of characteristic p. Suppose h is a homomorphism from R to S. If $h(R^o) \subseteq S^o$ (which is equivalent to the assertion that every minimal prime of S contracts to a minimal prime of R), then we have the following:

 \Box

- (a) If $I \subseteq R$, then $h(I^*) \subseteq (IS)^*$
- (b) If J is tightly closed in S, its contraction to R is tightly closed in R.

PROOF. To see (a), note that $c \in R^o$ and $cx^q \in I^{[q]}$ for all $q \gg 0$ implies that $h(c) \in S^o$ and $h(c)h(x)^q \in (IS)^{[q]}$ for all $q \gg 0$. (b) is immediate from (a).

THEOREM 2.5. Let R be a pure subring of a module-finite F-rational ring S. If either dim R=1, or S is Gorenstein, then R is also F-rational.

PROOF. We may assume that R is a normal local domain by the purity [4, Lemma 6.2 and Proposition 6.15]. First, we may assume that dim R=1. Let x be a nonzero element in R. Then xS is also nonzero in S and so xS is a principal ideal of height one. Then xS is tightly closed by the F-rationality of S. Thus xR is also tightly closed by Lemma 2.4. Hence R is F-rational in this case. If S is Gorenstein, then every ideal of S is tightly closed. Thus every parameter ideal of S is tightly closed by Lemma 2.4. So S is also S-rational.

But we need some additional conditions that Theorem 2.5 still holds for the general case.

THEOREM 2.6. Let the local ring (R, m) be pure in the module-finite overring (S, M). If the unique maximal ideal M of S is minimal over mS, and S is F-rational, then R is also F-rational.

PROOF. We may assume that R is a domain [4, Proposition 6.15]. Then $R^o \subseteq S^o$ holds in this case. Let I be an ideal generated by any system of parameters for R. It suffices to show that $I = I^*$. Since M is minimal over mS and S is module-finite over R, IS is a parameter ideal for S. Then IS is tightly closed in S by the F-rationality of S. Since R is S-pure, every ideal is contracted from S by Lemma 2.4. So $(IS)^* \cap R = I$. But

$$(IS)^* \cap R \supset I^*S \cap R = I^*.$$

Hence $I = I^*$ and R is F-rational.

References

- [1] Fedder, R. and K. i. Watanabe, A characterization of F-regularity in terms of F-purity, Proceedings of the program in commutative algebra at MSRI, Publ. 15 Springer-Verlag (1989), 227-245.
- [2] Hochster, M. and C. Huneke, Tight closure, invarint theory, and the Briançon-Skoda Theorem, Journal A. M. S. 3 (1990), 31-116.
- [3] Hochster, M., Tight closure in equal characteristic, big Cohen-Macaulay algebras, and solid closure, Contemporary Math. 159 (1994), 173-196.
- [4] Hochster, M. and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math. 13 (1974), 115-175.

Global Analysis Research Center Seoul National University Seoul 151-742, Korea