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THE UNITS AND IDEMPOTENTS IN THE
GROUP RING OF A FINITE CYCLIC GROUP

WON-SUN PARK

ABSTRACT. Let K be a algebraically closed field of characteristic 0
and G a cyclic group of order n. We find the units and idempotent
elements of the group ring KG by using the basic group table matrix

of G.

1. Introduction

Let G = {go = 1,91,92," - ,gn—1} be a finite group with the fixed

order go, 91,92, ,gn_1 of elements.
From the group table

go G ... G ... Gnp-1
90 :
a1
a; I /71 ]
gn—-1

we obtain the group table matrix
(9i95)-

A basic group table matrix is a matrix with the diagonal entries 1 ob-
taining from the group table matrix (g;g,) by elementary row operations
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interchanging two rows. The elements of the first column of the basic
group table matrix are inverses of the elements go, 91,2, , gn_1 of G.

Let R be a ring with unity and G = {go = 1, 91,92, - - ,gn_1} a finite
group with the fixed order go, 91,92, -+ ,gn—1 of elements. From the
element a = Z:'L:_ol 7(9:)g: of the group ring RG, we obtain a following
matrix M, by putting r(g;) in the place of g; in the basic group table
matrix of G.

r(l)  r(g) -+ 7(ga-1)

M. = T(g‘fl) r(1)

Mol - )

n—1

This matrix M, is called a represented matrix of o = 37" ' r(g;)g:.

Let R be a ring with unity, G be a finite group and M (R,G) =
{M,]a € RG}. Then followings are trivial
(1) Mass = Mo+ My
(2) Map = Mo Mg
(3) Mo, =M, forreR.
And we can see that RG = M(R, G) by an algebra isomorphism.

DEFINITION. A elément Z?—_-—ol 7(gi)gi of RG is called a symmetrix
element of RG if whenever g;g; = 1, r(g;) = r(g;).

If a group G is a Klein’s four group, then every element of RG is
symmetrix.

In this paper, let a field K be a algebraically closed field of charac-
teristic 0 and a group G be cyclic of order n.

2. The units in the group ring of a finite cyclic group

Hughes and Pearson found the units in the group ring ZSs of the
symmetrix group S3. And Passman and Sehgal proved that if G is an
up-group and K is a field of characteristic 0, then all units in KG are
trivial.
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We shall find the units in the group ring KG by using the represented
matrix where K is a algebraically closed field of characteristic 0 and G
is a finite cyclic group of order n.

n-1

DEFINITION. Let oo = } 7" 7;¢° be an element of KG where r; #
0(0<t<n-1)andr; = 0 ( > t). Then the polynomial p(z) =
ro + 1z + -+ -+ rzt € K[z] is called a represented polynomial of a.

Let p, be a permutation matrix corresponding to the cyclic permu-
tation ¢ = (12---n). Then for a element a = Z;:Ol r:ig* of KG, the
represented matrix M, of a is as following

n-—1

i

M, = E 73Dy
i=0

Let £ be a primitive nth root of unity in K. Consider the Vander-
monde matrix V(1¢---£"71) and the represented polynomial p(x) of
a =" rg'. Since

Po = J=V(16--€) diag(1g - €)=V (1€ £

where £ is conjugate to &, we have

n—1
MQZ E ’I‘ipzr
=0

1

= ﬁV(lﬁ - gn—l)diag(p(l)p(é') . .p(En_.l)) 1

Vg7,

Hence
detMy = p(1)p(€) - -- p(€™71).

Thus a € KG is a unit if and only if detM, # 0. If a = Z?;ol rig' is a
unit, then from M- = M1,

-1 i S gty
0 k=0

Therefore we have the following theorem.

3
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THEOREM 2.1. Let a = Z:.‘:_OI rig® € KG where 1, #F0(0<t<
n—1)andr; =0 (j > t). Then « is a unit if and only if all nth root
of unity in K are not equal to the roots of the represented polynomial
p(z) of . And if a = Z?;OI rig" € KG is a unit, then

1 n—-1n—1
-1_ 4 F—ik, (prky—1 i
a’l==3 "% EH )y

i=0 k=0

where £ is a nth root of unity in K and € is conjugate to £.

Now if @ € KG is a unit, then we shall express a~! by the roots of
the represented polynomial of a.

Let o = Z?z"olrigi € KG where r; # 0 (0 <t < n-1) and
ri =0 (j >t). Let ux (k=1,2,---,¢) be all roots of the represented
polynomial p(z) of @. Then

p(x) = [[ (=~ w)

k=1
and thus ,
My = p(ps) =14 H(po —uil).
k=1

If o is a unit, then M, is a unit and u} #1 (k= 1,2,--- ,¢t). Therefore

t
Mt =77 [ (0o —weD) ™
k=1

and
(e —wrd)™ = (L= ) (g T+ g™ %po - P57,
Let B = (1 —up)™! Z:.:Ol u;‘—l_igi. Then

Mg, = (po —ux)™L.
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Therefore
¢
Mt;l :7't_1 HMﬂk'
k=1
Since
t
Moms = Mo =it [ Mp, = M, sy, g,
k=1
we have

¢

-1_ -1

a =7, H,Bk.
k=1

Therefore we have the following theorem

THEOREM 2.2. Let o = Z?z—ol rig" € KG wherer; # 0 (0 < t <
n—1)andr; =0 (j > t). Let ux (k=1,2,---,t) be the roots of the
represented polynomial of a. If o is a unit, then

¢
-1 -1
& =T ”ﬂk
k=1

where B = (1 — u)~! 7 s up 1 igh,
We can see that the symmetrix element o = r + ag + ag® + --- +
ag™ !(a # 0) of KG is a unit if and only if r # @ and r # (1 — n)a.
Thus if n is prime and « is a unit, then
al=r'tagtdg+ - +ag?
where
! 1 -1 -1
r'==[{r+(n—-1)a}" '+ (n—-1)(r-a)"!] and
n
1
@ = ~[fr+(m—1a} "~ (r—a)7]

from Theorem 2.1.
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3. The idempotents in the group ring of a finite cyclic group

By Kaplansky and Zalesskii, it was proved that if o = S oTigi €
KG is a nontrivial idempotent element where go is an identity, then rg
is a rational number lying strictly between 0 and 1 when K is a field of
characteristic 0 and G is a finite group.

We shall find the ry of an idempotent element a = Z::Ol rigt € KG
and nontrivial idempotent elements in KG when K is a algebraically
closed field of characteristic 0 and G is a cyclic group of order n.

The represented matrix M, of a = Z::OI rig* € KG is following.

Mo = V(166 )diag(p(1)p(6) - -p(E™ ) =

where £ is a primitive nth root of unity in K. Therefore o is an idem-
potent element if and only if p(1) = 1 0or 0, p(¢§) = 1 0or 0, --- and
p(§"1) =1 or 0. Hence KG has 2"-2 nontrivial idempotent elements.

VOE- )

From M,, we have followings

i p(€")

—0
1

-
=
|
S|k
-

3

Ty = ‘71; . £ " 'p(€Y)

n-—1
Tn—1= ‘?1; Z 'p(£?).
1=0

Hence we have the following theorem.
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THEOREM 3 1. KG has 2" — 2 nontrivial idempotent elements and if
a = Zf 01 rig" € KG is an idempotent element, then

(1) 7'()—0, n5n7"'7nn1)1

(2) The values of rg,71,--- and r,,_; are followings.
70 71 T2 Tn-1
0 0 0 0
1 1 i . i
1 lgn—l isn—2 l{
1 lgn—2 lgn—‘i l§2
1 le Le2 . Len—1
I R R N ta+e
= xrey) A1+ A1+
2 21+9 +e) 21+erh)
R e B (e A IR S (L)
5 AET+e AETPHE) e et
& A48 AETEE) o RETr e
2 o wHE e La4en2aentt) L latg4g?)
1 0 0 0

where & is a primitive nth root of unity in K.

THEOREM 3.2. KG has 3" — 2 nontrivial tripotent elements and if
a= Z:l-o Ti9" € KG is a tripotent element, then vy = 0, :t :t%, e,
+Z,

n
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PROOF. From Me = —=V(1£---£"~V)diag(p(L)p(€) - -- p(€" 1)) = V(1€---£"71)
and M3 = M,,
p(1)=-1,0, or 1, p(¢) =-1,0, 0r 1, ---, p(f”“l) =—1,0, or 1.

Therefore, we have done. a

EXAMPLE 1. In the case that G is a cyclic group of order 3.
Let o = Z?:o r:g* € KG. Then

ro = ${p(1) +p(6) + P(€M)

ri = 3 {p() + €p(6) + Ep(€?)

1
r2 = 2{p(1) + £p(§) + £*p(¢7)}
where £ is a primitive 3th root of unity in K and p(x) = ro+ 1z + 122>

Therefore if o is an idempotent element, then the values of ry, 1 and o
are followings.

70 T1 r2
0 0 0
1 1 1
3 3 3
1 —=1++3i —1—+/3i
3 6 6
1 —1-+/3% —14+/3i
3 6 6
2 =1 =1
3 3 3
2 1+v/35 1—v/3i
3 6 6
2 1-v/3i 14++/33
3 6 6
1 0.

EXAMPLE 2. In the case that G is a cyclic group oforder 4.
Let a = Y%  rig' € KG. Then

ro = 7{p(1) + 5(8) + P(E?) + p(€%)}

r = (0D + €5 + Ep(€7) + £(6%)}

r2 = 3{p(1) + €2p(6) + p(€) + E7p(6)

ro = 31p(D) + £p(8) + 2067 + (%)
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where ¢ is a primitive 4th root of unity in K and p(z) = ro + riz +
7‘2.172 -+ r3z3.
Therefore « is an idempotent element, then the values of rg, r1, 7o

and rj3 are followings.

To T T2 rs

0 0 0 0

1 1 1 1

4 4 4 4

1 =1 1 =1

4 4 4 4

1 1; ~1 -1

1 G T 1t

1 -1, =1 1.

1 2t T il

1 1

2 0 2 0

1 —1

2 0 i 0

i 1(i-1) 0 i+ 1)
3 2HE-1) 0 1G+1)
: $(GE+1) 0 SL-1)
3 FE+n 0 iG-
3 1 =1 1

4 4 4 4

3 =1 =1 -1

4 4 4 4

3 1, 1 -1

1 i 1 L

3 -1 1 Ly

i 7 1 1t

1 0 0 0.

In the case that G is a group of order 4, we can see that KG has

14 idempotent elements and, if o = Z?:o rigi € KG is an idempotent

element, then ry = 0, ;11-, %, %, 1 from the following theorem.
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THEOREM 3.3. Let K be a algebraically closed field of characteristic
0 and G be a group of order 4. Then

(1) KG has 14 nontrivial idempotent elements.
(2) ifa = Z?:o 7:9; € KG is an idempotent element, then rg =
0,33, 3.1

Proor. If G is a group of order 4, then either ( is isomorphic to the
cyclic group or G is isomorphic to the Klein’s four group.

In 4, we found all idempotent elements in the group ring of Klein’s
four group.

In example 2, we found all idempotent elements in the group ring of
a cyclic group of order 4. (]
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