A GENERALIZATION OF SILVIA CLASS OF FUNCTIONS

SUK YOUNG LEE* AND MYUNG SUN OH

ABSTRACT. E. M. Silvia introduced the class S_{α}^{λ} of α-λ-spirallike functions $f(z)$ satisfying the condition

$$\text{Re}[(e^{i\lambda} - \alpha) z f'(z) f(z) + \alpha (z f(z)f'(z)')] > 0,$$

where $\alpha \geq 0, |\lambda| < \frac{\pi}{2}$ and $|z| < 1$. We will generalize Silvia class of functions by formally replacing $f(z)$ in the denominator of (A) by a spirallike function $g(z)$. We denote the new class of functions by $Y(\alpha, \lambda)$.

In this note we obtain some results for the class $Y(\alpha, \lambda)$ including integral representation formula, relations between our class $Y(\alpha, \lambda)$ and Ziegler class Z_{λ}, the radius of convexity problem, a few coefficient estimates and a covering theorem for the class $Y(\alpha, \lambda)$.

1. Introduction

Let $f(z)$ belong to the class S of normalized univalent and holomorphic functions in the open unit disk E. Let $S_p(\lambda)$ denote the class of λ-spirallike functions in E with $f(0) = 0$, $f'(0) = 1$. These satisfy

$$\text{Re}[e^{i\lambda} z f'(z) f(z)] > 0 \text{ for } z \in E, |\lambda| < \frac{\pi}{2}.$$

Spaček [9] showed that each f in $S_p(\lambda)$ is univalent in E.

Received December 11, 1996. Revised September 22, 1997.
1991 Mathematics Subject Classification: Primary 30C32.
Key words and phrases: α-convex function, α-λ-spirallike function.
* The first author acknowledges support received from the Ministry of Education, ROK via 1996-97 BSRI-96-1424.
Ziegler [11] generalized the concept of close-to-convexity by formally replacing $f(z)$ in the denominator in (1.1) by a λ-spiral-like function. That is, f lies in the Ziegler class Z_λ if there is a $g(z) \in S_p(\lambda)$ such that

$$(1.2) \quad \text{Re}[e^{i\lambda} \frac{zf'(z)}{g(z)}] > 0 \text{ for } z \in E.$$

When $\lambda = 0$, Z_λ is the class of close-to-convex functions in E.

A holomorphic function $f(z)$ satisfying $f(z) \cdot f'(z) \neq 0$ for $0 < |z| < 1$ is said to be α-convex in E if

$$(1.3) \quad \text{Re}[(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \frac{(zf'(z))'}{f'(z)}] > 0 \text{ for } z \in E, \alpha \geq 0.$$

Chichra [1] introduced the class C_α of α-close-to-convex functions in E by formally replacing $f(z)$ in the denominator of (1.3) by a starlike function $\phi(z)$ in S^*. That is, $f \in C_\alpha$ if there exists a $\phi(z) \in S^*$ such that

$$(1.4) \quad \text{Re}[(1 - \alpha) \frac{zf'(z)}{\phi(z)} + \alpha \frac{(zf'(z))'}{\phi'(z)}] > 0 \text{ for } z \in E, \alpha \geq 0.$$

Silvia [8] generalized the definition of α-convexity to α-λ-spirallikeness as follows:

Let S_α denote the class of α-λ-spirallike functions in E, where $f \in S_\alpha$ if

$$(1.5) \quad \text{Re}[(e^{i\lambda} - \alpha) \frac{zf'(z)}{f(z)} + \alpha \frac{(zf'(z))'}{f'(z)}] > 0 \text{ for } z \in E, \alpha \geq 0, |\lambda| < \frac{\pi}{2}.$$

He proved that $S_\alpha \subset S_p(\lambda) \subset S$.

Now we will generalize Silvia class by formally replacing $f(z)$ in the denominator of (1.5) by a spiral-like function $g(z)$ in $S_p(\lambda)$. We denote this new class of functions by $Y(\alpha, \lambda)$.

DEFINITION. Let $f(z)$ be holomorphic in E with $f(0) = f'(0) - 1 = 0$. $f(z)$ belongs to the class $Y(\alpha, \lambda)$ if there exists a $g(z) \in S_p(\lambda)$ such that

$$(1.6) \quad \text{Re}[(e^{i\lambda} - \alpha) \frac{zf'(z)}{g(z)} + \alpha \frac{(zf'(z))'}{g'(z)}] > 0$$
for $z \in E, \alpha \geq 0, |\lambda| < \frac{\pi}{2}$.

Note that if $\alpha=0$, then $Y(\alpha, \lambda)$ is equal to Ziegler class Z_{λ}. If $\lambda = 0, Y(\alpha, \lambda)$ is equal to Chichra class C_{α}. If $\alpha=0, \lambda=0$, then $Y(\alpha, \lambda)$ is the class of close-to-convex functions in E.

In this note we prove some geometric properties for the functions $f(z)$ in $Y(\alpha, \lambda)$. We obtain the integral representation formula for the functions in $Y(\alpha, \lambda)$. We prove that for every admissible α and λ, each function $f(z)$ in $Y(\alpha, \lambda)$ lies in Ziegler class Z_{λ} and find the disk $|z| < r_0$ so that functions in Ziegler class Z_{λ} may satisfy the defining inequality (1.6) for the class $Y(\alpha, \lambda)$. Moreover, we solve the radius of convexity problem for the class $Y(\alpha, \lambda)$ and a covering theorem as well as a few coefficient estimates for functions in $Y(\alpha, \lambda)$.

2. Main Results for the class $Y(\alpha, \lambda)$

We now obtain an integral representation for the functions in the class $Y(\alpha, \lambda)$

Theorem 2.1. $f(z)$ is in the class $Y(\alpha, \lambda)$ if and only if there exists a regular function $p(z)$ with $p(0) = 1$, $Re \ p(z) > 0$ for $z \in E$ such that

$$f'(z) = \frac{1}{\alpha z[g(z)]^{\frac{e^{i\lambda}}{\alpha} - 1}} \int_0^z (\cos \lambda p(\zeta) + i \sin \lambda)g'(\zeta)[g(\zeta)]^{\frac{e^{i\lambda}}{\alpha} - 1} d\zeta,$$

where the powers are taken as principal values and $g(z) \in S_p(\lambda), \alpha \neq 0$.

If $\alpha = 0$, then

$$f'(z) = e^{-i\lambda}z^{-1}g(z)[\cos \lambda p(z) + i \sin \lambda].$$

Proof. If $f(z) \in Y(\alpha, \lambda)$, then for some regular function $p(z)$ with $p(0)=1$ and $Re \ p(z) > 0$ for $z \in E$, we can write

$$(e^{i\lambda} - \alpha)zf'(z)g(z) + \alpha z f'(z)g'(z) = \cos \lambda p(z) + i \sin \lambda$$

where $g(z) \in S_p(\lambda)$ and $|\lambda| < \frac{\pi}{2}$.

Multiplying both sides of (2.2) by $\alpha^{-1}g'(z)[g(z)]^{\frac{e^{i\lambda}}{\alpha} - 1}$, we have

$$e^{i\lambda} - 1)zf'(z)g'(z)[g(z)]^{\frac{e^{i\lambda}}{\alpha} - 2} + (zf'(z))[g(z)]^{\frac{e^{i\lambda}}{\alpha} - 1}$$
\[= (\cos \lambda p(z) + i \sin \lambda)\alpha^{-1} g'(z)[g(z)]^{\frac{s\lambda}{\alpha} - 1}. \]

The left hand side of (2.3) is the exact differential of \(zf'(z)[g(z)]^{\frac{s\lambda}{\alpha} - 1}\).

So integrating both sides of (2.3) with respect to \(z\), we obtain

\[zf'(z)[g(z)]^{\frac{s\lambda}{\alpha} - 1} = \alpha^{-1} \int_0^z (\cos \lambda p(\zeta) + i \sin \lambda)g'(\zeta)[g(\zeta)]^{\frac{s\lambda}{\alpha} - 1} d\zeta, \]

and get

\[f'(z) = \frac{1}{\alpha z [g(z)]^{\frac{s\lambda}{\alpha} - 1}} \int_0^z (\cos \lambda p(\zeta) + i \sin \lambda)g'(\zeta)[g(\zeta)]^{\frac{s\lambda}{\alpha} - 1}. \]

In particular if \(\alpha = 0\), we have

\[e^{i\lambda}zf'(z) = \cos \lambda p(z) + i \sin \lambda, \]

and hence

\[f'(z) = \frac{e^{-i\lambda}}{z}g(z)[\cos \lambda p(z) + i \sin \lambda]. \]

Conversely, if \(f(z)\) satisfies (2.1), we get,

\[\frac{zf'(z)}{g(z)} = \frac{1}{\alpha [g(z)]^{\frac{s\lambda}{\alpha}}} \int_0^z (\cos \lambda p(\zeta) + i \sin \lambda)g'(\zeta)[g(\zeta)]^{\frac{s\lambda}{\alpha} - 1} d\zeta \]

and

\[\frac{(zf'(z))'}{g'(z)} = \frac{\alpha^{-1}}{[g(z)]^{\frac{s\lambda}{\alpha}}}(1 - \frac{e^{i\lambda}}{\alpha}) \cdot \int_0^z (\cos \lambda p(\zeta) + i \sin \lambda)g'(\zeta)[g(\zeta)]^{\frac{s\lambda}{\alpha} - 1} d\zeta + \alpha^{-1} [\cos \lambda p(z) + i \sin \lambda]. \]

It follows that

\[(e^{i\lambda} - \alpha)\frac{zf'(z)}{g(z)} + \alpha\frac{(zf'(z))'}{g'(z)} = \cos \lambda p(z) + i \sin \lambda \]

which implies \(f(z) \in Y(\alpha, \lambda)\), since \(Re \ p(z) > 0\) for \(z \in E\). \(\square\)

In order to verify that a function \(f(z)\) in \(Y(\alpha, \lambda)\) belongs to the Ziegler's class \(Z_\lambda\), we need the following lemma which is due to I. S. Jack [3].
LEMMA 1. [3]. Let $\omega(z)$ be regular in E with $\omega(0) = 0$. If there exists a ζ in E such that

$$\max_{|z| \leq |\zeta|} |\omega(z)| = |\omega(\zeta)|,$$

then $\zeta \omega'(\zeta) = k \omega(\zeta)$ for some $k \geq 1$.

THEOREM 2.2. For $\alpha \geq 0, |\lambda| < \frac{\pi}{2}$, let $f(z)$ be in the class $Y(\alpha, \lambda)$. Then $f(z)$ satisfies the condition

$$\text{Re} \left[e^{i\lambda} \frac{zf'(z)}{g(z)} \right] > 0, \quad (z \in E) \quad \text{for some } g(z) \in S_p(\lambda),$$

and hence lies in Ziegler class Z_{λ}.

PROOF. If $f(z) \in Y(\alpha, \lambda)$, let us set

$$(2.4) \quad e^{i\lambda} \frac{zf'(z)}{g(z)} = \cos \lambda \frac{1 - \omega(z)}{1 + \omega(z)} + i \sin \lambda \quad (|\lambda| < \frac{\pi}{2}, g(z) \in S_p(\lambda))$$

where $\omega(z)$ is regular in E with $\omega(0) = 0$ and $\omega(z) \neq -1$ for $z \in E$. Since $\text{Re} \frac{1 - \omega(z)}{1 + \omega(z)} > 0$ whenever $|\omega(z)| < 1$ for $z \in E$, it suffices to show that $|\omega(z)| < 1$ for $z \in E$ in (2.4). Simplifying (2.4), it follows that

$$(2.5) \quad e^{i\lambda} \frac{zf'(z)}{g(z)} = e^{i\lambda} - \omega(z) e^{-i\lambda} \frac{1 + \omega(z)}{1 + \omega(z)}.$$

Differentiating (2.5) and using the condition (1.6), we have

$$\left(e^{i\lambda} - \alpha \right) \frac{zf'(z)}{g(z)} + \alpha \frac{(zf'(z))'}{g'(z)}$$

$$= \cos \lambda \frac{1 - \omega(z)}{1 + \omega(z)} + i \sin \lambda + \alpha e^{-i\lambda} \cos \lambda \left\{ \frac{g(z)}{g'(z)} \cdot \frac{-2 \omega'(z)}{(1 + \omega(z))^2} \right\}.$$

Now, suppose that $|\omega(z)| \geq 1$ for $z \in E$. Then there exists a ζ in E such that $\max_{|z| \leq |\zeta|} |\omega(z)| = |\omega(\zeta)| = 1$.

By Lemma 1, $\zeta \omega'(\zeta) = k \omega(\zeta)$ for some $k \geq 1$. For this ζ we have

$$\text{Re} \left[\frac{1 - \omega(\zeta)}{1 + \omega(\zeta)} \right] = 0.$$
and
\[\frac{\omega(\zeta)}{(1 + \omega(\zeta))^2} = \frac{1}{4 \cos^2 \frac{\theta}{2}}, \quad \text{where} \quad \omega(\zeta) = e^{i\theta}. \]

Then
\[
Re\{ (e^{i\lambda} - \alpha) \frac{\zeta f''(\zeta)}{g(\zeta)} + \alpha \frac{(\zeta f'(\zeta))^'}{g'(\zeta)} \} \\
= Re\{ \alpha \cos \lambda \frac{e^{-i\lambda} g(\zeta)}{\zeta g'(\zeta)} \cdot \frac{-2k\omega(\zeta)}{(1 + \omega(\zeta))^2} \}
\]
\[
= -\frac{\alpha k \cos \lambda}{2 \cos^2 \frac{\theta}{2}} Re\{ \frac{e^{-i\lambda} g(\zeta)}{\zeta g'(\zeta)} \} \quad (|\lambda| < \frac{\pi}{2}).
\]

Since \(g(z) \in S_p(\lambda) \), \(Re\frac{e^{-i\lambda} g(\zeta)}{\zeta g'(\zeta)} > 0 \) for \(\zeta \in E \).
Therefore, we have
\[
Re\{ (e^{i\lambda} - \alpha) \frac{\zeta f''(\zeta)}{g(\zeta)} + \alpha \frac{(\zeta f'(\zeta))^'}{g'(\zeta)} \} \leq 0 \quad (\zeta \in E).
\]

But this contradicts (1.6), since \(f \in Y(\alpha, \lambda) \).

Hence,
\[
Re \frac{e^{i\lambda} zf'(z)}{g(z)} > 0 \quad \text{for} \quad z \in E.
\]

This completes the proof. \(\square \)

Corollary. If \(\alpha > \beta \geq 0 \) and \(|\lambda| < \frac{\pi}{2} \), then \(Y(\alpha, \lambda) \subset Y(\beta, \lambda) \).

Proof. For \(\beta = 0 \), Theorem 2.2 shows that \(Y(\alpha, \lambda) \subset Y(0, \lambda) = Z_\lambda \).

For \(\beta \neq 0 \)
\[
(e^{i\lambda} - \beta) \frac{zf'(z)}{g(z)} + \beta \frac{(zf'(z))^'}{g'(z)}
\]
\[
= \frac{\beta}{\alpha} [e^{i\lambda} (\frac{\alpha}{\beta} - 1) \frac{zf'(z)}{g(z)} + (e^{i\lambda} - \alpha) \frac{zf'(z)}{g(z)} + \alpha \frac{(zf'(z))^'}{g'(z)}].
\]
For $\alpha > \beta$, if $f(z) \in Y(\alpha, \lambda)$, then

$$\text{Re}\{(e^{i\lambda} - \alpha)\frac{zf''(z)}{g(z)} + \alpha(zf''(z))' + \alpha g'(z)\} > 0 \quad (z \in E).$$

Now $f(z) \in Y(\alpha, \lambda) \subset Z_\lambda$ implies that $\text{Re} \ e^{i\lambda} \frac{zf''(z)}{g(z)} > 0$. Hence,

$$\text{Re}\{(e^{i\lambda} - \beta)\frac{zf''(z)}{g(z)} + \beta(zf''(z))' + \beta g'(z)\} > 0$$

showing that $f(z) \in Y(\beta, \lambda)$.

We now show that functions in the Ziegler class Z_λ satisfy the defining inequality for the class $Y(\alpha, \lambda)$ on a certain disk $|z| < r_0$.

Theorem 2.3. If $f(z)$ belongs to the Ziegler class Z_λ with $f(0) = 0$, $f'(0) = 1$, then $f(z)$ satisfies the inequality

$$\text{Re}\left[(e^{i\lambda} - \alpha)\frac{zf''(z)}{g(z)} + \alpha(zf''(z))' + \alpha g'(z)\right] > 0$$

for $|z| < r_0$ where $r_0 = (1 + \alpha) - \sqrt{(1 + \alpha)^2 - 1}$.

Proof. If $f(z) \in Z_\lambda$, there exists a $g(z) \in S_p(\lambda)$ such that

$$\text{Re} \ e^{i\lambda} \frac{zf''(z)}{g(z)} > 0 \text{ for } |\lambda| < \frac{\pi}{2}.$$

Let $\omega(z)$ be the regular function in E with $\omega(0) = 0$, $|\omega(z)| < 1$ for $z \in E$, given by

$$e^{i\lambda} \frac{zf''(z)}{g(z)} = \cos \lambda \frac{1 + \omega(z)}{1 - \omega(z)} + i \sin \lambda. \quad (2.6)$$

By logarithmic differentiation of (2.6) we get

$$1 + \frac{zf''(z)}{f'(z)} - \frac{zg'(z)}{g(z)} = \frac{(1 + e^{-2i\lambda})\omega'(z)}{(1 + e^{-2i\lambda}\omega(z))(1 - \omega(z))}. $$
Thus,
\[
(e^{i\lambda} - \alpha) \frac{zf'(z)}{g(z)} + \alpha \frac{(zf'(z))'}{g'(z)}
= \frac{e^{i\lambda} + e^{-i\lambda} \omega(z)}{1 - \omega(z)} + \alpha \frac{(1 + e^{-2i\lambda})z\omega'(z)}{(1 + e^{-2i\lambda} \omega(z))(1 - \omega(z))} \frac{f'(z)}{g'(z)}
= \frac{e^{i\lambda} + e^{-i\lambda} \omega(z)}{1 - \omega(z)} + \alpha \frac{(1 + e^{-2i\lambda})z\omega'(z)}{(1 - \omega(z))^2} \frac{g(z)}{zg'(z)}
\]

where the last equality is obtained by (2.6).

In order to show that \(f(z) \in Y(\alpha, \lambda)\) for \(|z| < r_0\), where \(r_0 = (1 + \alpha) - \sqrt{(1 + \alpha)^2 - 1}\), we observe that

\[
\text{Re} \left[(e^{i\lambda} - \alpha) \frac{zf'(z)}{g(z)} + \alpha \frac{(zf'(z))'}{g'(z)} \right]
\geq \text{Re} \left[\frac{e^{i\lambda} + e^{-i\lambda} \omega(z)}{1 - \omega(z)} - \alpha \frac{(1 + e^{-2i\lambda})z\omega'(z)}{(1 - \omega(z))^2} \frac{g(z)}{zg'(z)} \right].
\]

By using the well known inequalities \([2]\)

\[
|\omega'(z)| \leq \frac{1 - |\omega(z)|^2}{1 - r^2}, \quad \left| \frac{g(z)}{zg'(z)} \right| \leq \frac{1 + r}{1 - r}
\]

and

\[
|1 - \omega(z)| \leq 1 + |\omega(z)| \leq 1 + r, \quad (|z| = r),
\]

we have

\[
\text{Re} \left[\frac{e^{i\lambda} + e^{-i\lambda} \omega(z)}{1 - \omega(z)} - \alpha \frac{(1 + e^{-2i\lambda})z\omega'(z)}{(1 - \omega(z))^2} \frac{g(z)}{zg'(z)} \right]
\geq \frac{\cos \lambda (1 - |\omega(z)|^2)}{|1 - \omega(z)|^2} - \alpha \left[1 + e^{-2i\lambda} \right] \frac{(1 - |\omega(z)|^2)r}{(1 - \omega(z))^2(1 - r)^2}
\geq \frac{\cos \lambda (1 - 2r - 2\alpha r + r^2)(1 - |\omega(z)|^2)}{(1 - r)^2(1 - \omega(z))^2}
\geq \frac{\cos \lambda (1 - 2r - 2\alpha r + r^2)}{(1 - r)^2}.
\]

Since the smallest positive root of \(1 - 2(1 + \alpha)r + r^2 = 0\) is \(r_0 = (1 + \alpha) - \sqrt{(1 + \alpha)^2 - 1}\), \(f(z)\) satisfies the inequality (1.6) for \(|z| < r_0\). \(\Box\)
A generalization of Silvia class of functions

Theorem 2.4. Let \(f(z) \in Y(\alpha, \lambda) \). Then \(w = f(z) \) maps the disk \(|z| < r_1\) onto a convex region where \(r_1 \) is the smallest positive root of the equation

\[
\alpha|\alpha + e^{i\lambda}| - r\{\alpha + e^{i\lambda}| (2\alpha \cos \lambda + 4 \cos \lambda + \alpha) + 2\alpha \cos \lambda \}
+ r^2\{\alpha + e^{i\lambda}| (2\alpha \cos^2 \lambda + 2 \cos \lambda - 2 \cos \lambda - \alpha) - 2\alpha \cos \lambda \}
- r^3|\alpha + e^{i\lambda}| (2\alpha \cos^2 \lambda - 2 \cos \lambda - \alpha) = 0, \quad |z| = r.
\]

Proof. If \(f(z) \in Y(\alpha, \lambda) \) the integral representation formula shows that

\[
(2.7) \quad f'(z) = \frac{1}{\alpha z[g(z)]^\frac{\alpha}{\alpha}} \int_0^z \frac{\cos \lambda p(\zeta) + i \sin \lambda)g'(\zeta)[g(\zeta)]^{\frac{\alpha}{\alpha}-1} d\zeta
\]

for \(z \in E \) and \(|\lambda| < \frac{\pi}{2}\), where the powers are taken as principal values. By logarithmic differentiation of (2.7), we obtain

\[
(2.8) \quad 1 + \frac{zf''(z)}{f'(z)} = (1 - \frac{e^{i\lambda}}{\alpha}) \frac{zg'(z)}{g(z)} + \frac{z(\cos \lambda p(\zeta) + i \sin \lambda)g'(\zeta)[g(\zeta)]^{\frac{\alpha}{\alpha}-1}}{\int_0^z (\cos \lambda p(\zeta) + i \sin \lambda)g'(\zeta)[g'(\zeta)]^{\frac{\alpha}{\alpha}-1} d\zeta}.
\]

Thus

\[
Re\{1 + \frac{zf''(z)}{f'(z)}\} = Re(1 - \frac{e^{i\lambda}}{\alpha}) \frac{zg'(z)}{g(z)} + ReF(z),
\]

where \(F(z) \) is the second term of the right hand side of (2.8).

Since \(g(z) \in S_p(\lambda) \),

\[
Re\{e^{i\lambda} \frac{zg'(z)}{g(z)}\} \leq \cos \lambda \frac{1 + r}{1 - r}.
\]

If we let \(g(z) = z + b_2z^2 + \cdots \) and \(p(z) = 1 + p_1z + \cdots \) in \(F(z) \), a brief calculation shows that \(F(z) \) has a series expansion

\[
F(z) = \frac{e^{i\lambda}}{\alpha} + \frac{\alpha \cos \lambda p_1 + e^{i\lambda}(\alpha + e^{i\lambda}b_2)}{\alpha(\alpha + e^{i\lambda})}z + \cdots.
\]
Furthermore, $F(z)$ is a regular function in E and hence

$$|F(z) - \frac{e^{i\lambda}}{\alpha}| \leq \frac{2\alpha \cos \lambda + 2|\alpha + e^{i\lambda}| \cos \lambda}{\alpha|\alpha + e^{i\lambda}|} \frac{r}{(1-r)^2}.$$

This inequality shows that

$$ReF(z) \geq \frac{\cos \lambda}{\alpha} - \frac{2 \cos \lambda (\alpha + |\alpha + e^{i\lambda}|)}{\alpha|\alpha + e^{i\lambda}|} \frac{r}{(1-r)^2}.$$

Robertson [6] showed that if $g(z) \in S_p(\lambda)$, then for $|z| = r < 1$

$$\frac{(1 - \lambda \cos \lambda)^2 - r^2 \sin^2 \lambda}{1 - r^2} \leq Re \frac{zg'(z)}{g(z)} \leq \frac{(1 + \lambda \cos \lambda)^2 - r^2 \sin^2 \lambda}{1 - r^2}.$$

Using (2.9) we have

$$Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} \geq \frac{(1 - \lambda \cos \lambda)^2 - r^2 \sin^2 \lambda}{1 - r^2} - \frac{\cos \lambda (1 + r)}{\alpha(1-r)}$$

$$+ \frac{\cos \lambda}{\alpha} - \frac{2r \cos \lambda (\alpha + |\alpha + e^{i\lambda}|)}{\alpha|\alpha + e^{i\lambda}|(1-r)^2}$$

$$= \frac{N(r)}{\alpha|\alpha + e^{i\lambda}|(1+r)(1-r)^2},$$

where

$$N(r) = \alpha|\alpha + e^{i\lambda}| - r|\alpha + e^{i\lambda}|(2\alpha \cos \lambda + 4 \cos \lambda + \alpha) + 2\alpha \cos \lambda$$

$$+ r^2|\alpha + e^{i\lambda}|(2\alpha \cos^2 \lambda + 2\alpha \cos \lambda - 2 \cos \lambda - \alpha) - 2\alpha \cos \lambda$$

$$- r^3|\alpha + e^{i\lambda}|(2\alpha \cos^2 \lambda - 2 \cos \lambda - \alpha).$$

Here, $N(0) = \alpha|\alpha + e^{i\lambda}| > 0$ and $N(1) = -4 \cos \lambda (\alpha + |\alpha + e^{i\lambda}|) < 0$. Hence $f(z)$ is convex for $|z| < r_1$ where r_1 is the smallest positive root of $N(r) = 0$. This completes the proof.

To discuss coefficient estimates for the class $Y(\alpha, \lambda)$ we need the following lemma which is due to Libera.
Lemma 2. [5]. If \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) belongs to \(S_p(\lambda) \) in \(E \), then

\[
|a_n| \leq \prod_{k=0}^{n-2} \frac{|2 \cos \lambda e^{-i\lambda} + k|}{|k + 1|}, \quad n = 2, 3, 4, \ldots,
\]

and these bounds are sharp for all admissible \(\lambda \) and for each \(n \).

Theorem 2.5. Let \(f(z) \) be in the class \(Y(\alpha, \lambda) \). If \(f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \), then

\[
|a_2| \leq \frac{\cos \lambda (1 + |\alpha + e^{i\lambda}|)}{|\alpha + e^{i\lambda}|}
\]

and

\[
|a_3| \leq \frac{\cos \lambda \sqrt{1 + 8 \cos^2 \lambda}}{3} + \frac{4 \cos^2 \lambda |3\alpha + e^{i\lambda}|}{3|\alpha + e^{i\lambda}||2\alpha + e^{i\lambda}|} + \frac{2 \cos \lambda}{3|2\alpha + e^{i\lambda}|}.
\]

These bounds are sharp for all admissible \(\alpha \) and \(\lambda \).

Proof. Let \(P = \{ p(z); p(z) \) is regular in \(E \) with \(p(0) = 1, \Re p(z) > 0 \} \). If \(f(z) \) is in \(Y(\alpha, \lambda) \), we can write \(, \) for some \(g(z) \in S_p(\lambda) \) and \(p(z) \in P \),

\[
(e^{i\lambda} - \alpha) \frac{zf'(z)}{g(z)} + \alpha \frac{zf'(z)'}{g'(z)} = \cos \lambda p(z) + i \sin \lambda.
\]

Let \(g(z) = z + b_2 z^2 + b_3 z^3 + \cdots \) and \(p(z) = 1 + p_1 z + p_2 z^2 + \cdots \). Then (2.10) can be written as

\[
(e^{i\lambda} - \alpha)(z + 2a_2 z^2 + 3a_3 z^3 + \cdots)(1 + 2b_2 z + 3b_3 z^2 + \cdots) + \alpha(1 + 4a_2 z + 9a_3 z^2 + \cdots)(z + b_2 z^2 + b_3 z^3 + \cdots) = [e^{i\lambda} + \cos \lambda(p_1 z + p_2 z^2 + \cdots)](z + b_2 z^2 + \cdots)(1 + 2b_2 z + \cdots).
\]

On equating both sides of (2.11), we get

\[
2(\alpha + e^{i\lambda})a_2 = (\alpha + e^{i\lambda})b_2 + \cos \lambda p_1
\]
and

\[(2.13) \]

\[3(2\alpha + e^{i\lambda})a_3 = -4e^{i\lambda}a_2b_2 + (2\alpha + e^{i\lambda})b_3 + 2e^{i\lambda}b_2^2 + (3b_2p_1 + p_2)\cos \lambda. \]

It is well known [2] that \(|p_n| \leq 2\) for \(n = 1, 2, 3, \cdots\). By Lemma 2, (2.12) reduces to

\[|\alpha + e^{i\lambda}|a_2| \leq \cos \lambda (1 + |\alpha + e^{i\lambda}|). \]

Hence,

\[|a_2| \leq \frac{\cos \lambda (1 + |\alpha + e^{i\lambda}|)}{|\alpha + e^{i\lambda}|}. \]

Now substituting (2.12) into (2.13) we obtain

\[3(2\alpha + e^{i\lambda})(\alpha + e^{i\lambda})a_3 = (\alpha + e^{i\lambda})(2\alpha + e^{i\lambda})b_3 + \cos \lambda (3\alpha + e^{i\lambda})b_2p_1 + \cos \lambda (\alpha + e^{i\lambda})p_2. \]

By lemma 2 again, we have

\[|a_3| \leq \frac{\cos \lambda \sqrt{1 + 8\cos^2 \lambda}}{3} + \frac{4\cos^2 \lambda|3\alpha + e^{i\lambda}|}{3|\alpha + e^{i\lambda}| |2\alpha + e^{i\lambda}|} + \frac{2\cos \lambda}{3|2\alpha + e^{i\lambda}|}. \]

The functions \(g(z) = z(1 - z)^{-2\cos \lambda e^{-i\lambda}}\) and \(p(z) = \frac{1 + e^{-i\lambda}z}{1 - e^{-i\lambda}z}\) show that the results are sharp.

Using the second coefficient estimate for the class \(Y(\alpha, \lambda)\), we obtain the following result similar to Koebe ‘s covering theorem.

Theorem 2.6. Let \(f(z)\) be in the class \(Y(\alpha, \lambda)\) and let \(\omega\) be any complex number such that \(f(z) \neq \omega\) for \(z\) in \(E\). Then

\[|\omega| \geq \frac{\alpha + 1}{3\alpha + 4}, \quad (\alpha \geq 0). \]

Proof. Let us write

\[f_1(z) = \frac{\omega f(z)}{\omega - f(z)}. \]

Then \(f_1(z)\) belong to \(S\) and \(f_1(z) = z + (a_2 + \frac{1}{\omega})z^2 + \cdots\). Hence, \(|a_2 + \frac{1}{\omega}| \leq 2\). By Theorem 2.5, we obtain

\[\left| \frac{1}{\omega} \right| \leq \frac{(2 + \cos \lambda)|\alpha + e^{i\lambda}| + \cos \lambda}{|\alpha + e^{i\lambda}|} \leq \frac{4 + 3\alpha}{1 + \alpha}. \]

Hence,

\[|\omega| \geq \frac{\alpha + 1}{3\alpha + 4}. \]

\[\square \]
A generalization of Silvia class of functions

References

Department of Mathematics
Ewha Womans University
Seoul 120-750, Korea