A GENERALIZATION OF SILVIA CLASS OF FUNCTIONS

SUK YOUNG LEE* AND MYUNG SUN OH

ABSTRACT. E. M. Silvia introduced the class S_{α}^{λ} of α - λ -spirallike functions f(z) satisfying the condition

$$(\mathrm{A}) \qquad \qquad Re[(e^{i\lambda}-\alpha)\frac{zf'(z)}{f(z)}+\alpha\frac{(zf'(z))'}{f'(z)}]>0,$$

where $\alpha \geq 0, |\lambda| < \frac{\pi}{2}$ and |z| < 1. We will generalize Silvia class of functions by formally replacing f(z) in the denominator of (A) by a spirallike function g(z). We denote the new class of functions by $Y(\alpha, \lambda)$.

In this note we obtain some results for the class $Y(\alpha, \lambda)$ including integral representation formula, relations between our class $Y(\alpha, \lambda)$ and Ziegler class Z_{λ} , the radius of convexity problem, a few coefficient estimates and a covering theorem for the class $Y(\alpha, \lambda)$.

1. Introduction

Let f(z) belong to the class S of normalized univalent and holomorphic functions in the open unit disk E. Let $S_p(\lambda)$ denote the class of λ -spirallike functions in E with f(0) = 0, f'(0) = 1. These satisfy

(1.1)
$$Re[e^{i\lambda}\frac{zf'(z)}{f(z)}] > 0 \text{ for } z \in E, |\lambda| < \frac{\pi}{2}.$$

Spaček [9] showed that each f in $S_p(\lambda)$ is univalent in E.

Received December 11, 1996. Revised September 22, 1997.

¹⁹⁹¹ Mathematics Subject Classification: Primary 30C32.

Key words and phrases: α -convex function, α - λ -spirallike function.

^{*} The first author acknowledges support received from the Ministry of Education, ROK via 1996-97 BSRI-96-1424.

Ziegler [11] generalized the concept of close-to-convexity by formally replacing f(z) in the denominator in (1.1) by a λ -spirallike function. That is, f lies in the Ziegler class Z_{λ} if there is a $g(z) \in S_p(\lambda)$ such that

(1.2)
$$Re[e^{i\lambda} \frac{zf'(z)}{g(z)}] > 0 \text{ for } z \in E.$$

When $\lambda = 0, Z_{\lambda}$ is the class of close-to-convex functions in E.

A holomorphic function f(z) satisfying $f(z) \cdot f'(z) \neq 0$ for 0 < |z| < 1 is said to be α -convex in E if

$$(1.3) \qquad Re[(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\frac{(zf'(z))'}{f'(z)}] > 0 \text{ for } z \in E, \alpha \geq 0.$$

Chichra [1] introduced the class C_{α} of α -close-to-convex functions in E by formally replacing f(z) in the denominator of (1.3) by a starlike function $\phi(z)$ in S^* . That is, $f \in C_{\alpha}$ if there exists a $\phi(z) \in S^*$ such that

$$(1.4) \qquad \qquad Re[(1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\frac{(zf'(z))'}{\phi'(z)}] > 0 \,\, \text{for} \,\, z \in E, \alpha \geq 0.$$

Silvia [8] generalized the definition of α -convexity to α - λ -spirallikeness as follows;

Let S_{α}^{λ} denote the class of α - λ -spirallike functions in E, where $f \in S_{\alpha}^{\lambda}$ if

$$(1.5) \quad Re[(e^{i\lambda}-\alpha)\frac{zf'(z)}{f(z)}+\alpha\frac{(zf'(z))'}{f'(z)}]>0 \text{ for } z\in E, \alpha\geq 0, |\lambda|<\frac{\pi}{2}.$$

He proved that $S_{\alpha}^{\lambda} \subset S_{p}(\lambda) \subset S$.

Now we will generalize Silvia class by formally replacing f(z) in the denominator of (1.5) by a spirallike function g(z) in $S_p(\lambda)$. We denote this new class of functions by $Y(\alpha, \lambda)$.

DEFINITION. Let f(z) be holomorphic in E with f(0) = f'(0) - 1 = 0. f(z) belongs to the class $Y(\alpha, \lambda)$ if there exists a $g(z) \in S_p(\lambda)$ such that

(1.6)
$$Re[(e^{i\lambda} - \alpha)\frac{zf'(z)}{g(z)} + \alpha\frac{(zf'(z))'}{g'(z)}] > 0$$

for $z \in E, \alpha \geq 0, |\lambda| < \frac{\pi}{2}$.

Note that if $\alpha=0$, then $Y(\alpha,\lambda)$ is equal to Ziegler class Z_{λ} . If $\lambda=0, Y(\alpha,\lambda)$ is equal to Chichra class C_{α} . If $\alpha=0, \lambda=0$, then $Y(\alpha,\lambda)$ is the class of close-to-convex functions in E.

In this note we prove some geometric properties for the functions f(z) in $Y(\alpha, \lambda)$. We obtain the integral representation formula for the functions in $Y(\alpha, \lambda)$. We prove that for every admissible α and λ , each function f(z) in $Y(\alpha, \lambda)$ lies in Ziegler class Z_{λ} and find the disk $|z| < r_0$ so that functions in Ziegler class Z_{λ} may satisfy the defining inequality (1.6) for the class $Y(\alpha, \lambda)$. Moreover, we solve the radius of convexity problem for the class $Y(\alpha, \lambda)$ and a covering theorem as well as a few coefficient estimates for functions in $Y(\alpha, \lambda)$.

2. Main Results for the class $Y(\alpha, \lambda)$

We now obtain an integral representation for the functions in the class $Y(\alpha, \lambda)$

THEOREM 2.1. f(z) is in the class $Y(\alpha, \lambda)$ if and only if there exists a regular function p(z) with p(0) = 1, $Re \ p(z) > 0$ for $z \in E$ such that

$$(2.1) \quad f'(z) = \frac{1}{\alpha z [g(z)]^{\frac{e^{i\lambda}}{\alpha} - 1}} \int_0^z (\cos \lambda p(\zeta) + i \sin \lambda) g'(\zeta) [g(\zeta)]^{\frac{e^{i\lambda}}{\alpha} - 1} d\zeta,$$

where the powers are taken as principal values and $g(z) \in S_p(\lambda)$, $\alpha \neq 0$. If $\alpha = 0$, then

$$f'(z) = e^{-i\lambda} z^{-1} g(z) [\cos \lambda p(z) + i \sin \lambda].$$

PROOF. If $f(z) \in Y(\alpha, \lambda)$, then for some regular function p(z) with p(0)=1 and $Re\ p(z)>0$ for $z\in E$, we can write

$$(2.2) \qquad (e^{i\lambda} - \alpha)\frac{zf'(z)}{g(z)} + \alpha\frac{(zf'(z))'}{g'(z)} = \cos\lambda p(z) + i\sin\lambda$$

where $g(z) \in S_p(\lambda)$ and $|\lambda| < \frac{\pi}{2}$.

Multiplying both sides of (2.2) by $\alpha^{-1}g'(z)[g(z)]^{\frac{e^{i\lambda}}{\alpha}-1}$, we have

$$(2.3) \qquad \qquad (\frac{e^{i\lambda}}{\alpha}-1)zf'(z)g'(z)[g(z)]^{\frac{e^{i\lambda}}{\alpha}-2}+(zf'(z))'[g(z)]^{\frac{e^{i\lambda}}{\alpha}-1}$$

$$=(\cos \lambda p(z)+i\sin \lambda)\alpha^{-1}g'(z)[g(z)]^{\frac{e^{i\lambda}}{\alpha}-1}.$$

The left hand side of (2.3) is the exact differential of $zf'(z)[g(z)]^{\frac{e^{i\lambda}}{\alpha}-1}$. So integrating both sides of (2.3) with respect to z, we obtain

$$zf'(z)[g(z)]^{\frac{e^{i\lambda}}{\alpha}-1}=\alpha^{-1}\int_0^z(\cos\lambda p(\zeta)+i\sin\lambda)g'(\zeta)[g(\zeta)]^{\frac{e^{i\lambda}}{\alpha}-1}d\zeta,$$

and get

$$f'(z) = \frac{1}{\alpha z [g(z)]^{\frac{e^{i\lambda}}{\alpha} - 1}} \int_0^z (\cos \lambda p(\zeta) + i \sin \lambda) g'(\zeta) [g(\zeta)]^{\frac{e^{i\lambda}}{\alpha} - 1}.$$

In particular if $\alpha = 0$, we have

$$e^{i\lambda} rac{zf'(z)}{g(z)} = \cos \lambda p(z) + i\sin \lambda,$$

and hence

$$f'(z) = \frac{e^{-i\lambda}}{z}g(z)[\cos\lambda p(z) + i\sin\lambda].$$

Conversely, if f(z) satisfies (2.1), we get,

$$\frac{zf'(z)}{g(z)} = \frac{1}{\alpha [g(z)]^{\frac{e^{i\lambda}}{\alpha}}} \int_0^z (\cos \lambda p(\zeta) + i \sin \lambda) g'(\zeta) [g(\zeta)]^{\frac{e^{i\lambda}}{\alpha} - 1} d\zeta$$

and

$$\frac{(zf'(z))'}{g'(z)} = \frac{\alpha^{-1}}{[g(z)]^{\frac{e^{i\lambda}}{\alpha}}} (1 - \frac{e^{i\lambda}}{\alpha}) \cdot \int_0^z (\cos \lambda p(\zeta) + i \sin \lambda) g'(\zeta) [g(\zeta)]^{\frac{e^{i\lambda}}{\alpha} - 1} d\zeta + \alpha^{-1} [\cos \lambda p(z) + i \sin \lambda].$$

It follows that

$$(e^{i\lambda} - \alpha)\frac{zf'(z)}{g(z)} + \alpha\frac{(zf'(z))'}{g'(z)} = \cos\lambda p(z) + i\sin\lambda$$

which implies $f(z) \in Y(\alpha, \lambda)$, since $Re \ p(z) > 0$ for $z \in E$.

In order to verify that a function f(z) in $Y(\alpha, \lambda)$ belongs to the Ziegler's class Z_{λ} , we need the following lemma which is due to I. S. Jack [3].

LEMMA 1. [3]. Let $\omega(z)$ be regular in E with $\omega(0) = 0$. If there exists a ζ in E such that

$$\max_{|z| \le |\zeta|} |\omega(z)| = |\omega(\zeta)|,$$

then $\zeta \omega'(\zeta) = k\omega(\zeta)$ for some $k \geq 1$.

THEOREM 2.2. For $\alpha \geq 0, |\lambda| < \frac{\pi}{2}$, let f(z) be in the class $Y(\alpha, \lambda)$. Then f(z) satisfies the condition

$$Re\ [e^{i\lambda} \frac{zf'(z)}{g(z)}] > 0, \quad (z \in E) \quad \text{ for some } g(z) \in S_p(\lambda),$$

and hence lies in Ziegler class Z_{λ} .

PROOF. If $f(z) \in Y(\alpha, \lambda)$, let us set

$$(2.4) \qquad e^{i\lambda}\frac{zf'(z)}{g(z)}=\cos\lambda\frac{1-\omega(z)}{1+\omega(z)}+i\sin\lambda \quad (|\lambda|<\frac{\pi}{2},g(z)\in S_p(\lambda))$$

where $\omega(z)$ is regular in E with $\omega(0)=0$ and $\omega(z)\neq -1$ for $z\in E$. Since $Re\ \frac{1-\omega(z)}{1+\omega(z)}>0$ whenever $|\omega(z)|<1$ for $z\in E$, it suffices to show that $|\omega(z)|<1$ for $z\in E$ in (2.4). Simplifying (2.4), it follows that

(2.5)
$$e^{i\lambda} \frac{zf'(z)}{g(z)} = \frac{e^{i\lambda} - \omega(z)e^{-i\lambda}}{1 + \omega(z)}.$$

Differentiating (2.5) and using the condition (1.6), we have

$$\begin{split} &(e^{i\lambda} - \alpha)\frac{zf'(z)}{g(z)} + \alpha\frac{(zf'(z))'}{g'(z)} \\ &= \cos\lambda\frac{1 - \omega(z)}{1 + \omega(z)} + i\sin\lambda + \alpha e^{-i\lambda}\cos\lambda\{\frac{g(z)}{g'(z)} \cdot \frac{-2\omega'(z)}{(1 + \omega(z))^2}\}. \end{split}$$

Now, suppose that $|\omega(z)| \ge 1$ for $z \in E$. Then there exists a ζ in E such that $\max_{|z| \le |\zeta|} |\omega(z)| = |\omega(\zeta)| = 1$.

By Lemma 1, $\zeta \omega'(\zeta) = k\omega(\zeta)$ for some $k \geq 1$. For this ζ we have

$$Re \ \frac{1 - \omega(\zeta)}{1 + \omega(\zeta)} = 0$$

886

and

$$rac{\omega(\zeta)}{(1+\omega(\zeta))^2} = rac{1}{4\cos^2rac{ heta}{2}}, \quad ext{ where } \ \omega(\zeta) = e^{i heta}.$$

Then

$$Re\{(e^{i\lambda} - \alpha)\frac{\zeta f'(\zeta)}{g(\zeta)} + \alpha \frac{(\zeta f'(\zeta))'}{g'(\zeta)}\}$$

$$= Re\{\alpha \cos \lambda \frac{e^{-i\lambda}g(\zeta)}{\zeta g'(\zeta)} \cdot \frac{-2k\omega(\zeta)}{(1+\omega(\zeta))^2}\}$$

$$= -\frac{\alpha k \cos \lambda}{2 \cos^2 \frac{\theta}{2}} Re\{\frac{e^{-i\lambda}g(\zeta)}{\zeta g'(\zeta)}\} \quad (|\lambda| < \frac{\pi}{2}).$$

Since $g(z) \in S_p(\lambda)$, $Re^{\frac{e^{-i\lambda}g(\zeta)}{\zeta g'(\zeta)}} > 0$ for $\zeta \in E$. Therefore, we have

$$Re\{(e^{i\lambda}-lpha)rac{\zeta f'(\zeta)}{g(\zeta)}+lpharac{(\zeta f'(\zeta))'}{g'(\zeta)}\}\leq 0\quad (\zeta\in E).$$

But this contradicts (1.6), since $f \in Y(\alpha, \lambda)$. Hence,

$$Re \ e^{i\lambda} \frac{zf'(z)}{g(z)} > 0 \ for \ z \in E.$$

This completes the proof.

COROLLARY. If $\alpha > \beta \geq 0$ and $|\lambda| < \frac{\pi}{2}$, then $Y(\alpha, \lambda) \subset Y(\beta, \lambda)$.

PROOF. For $\beta = 0$, Theorem 2.2 shows that

$$Y(\alpha, \lambda) \subset Y(0, \lambda) = Z_{\lambda}$$
.

For $\beta \neq 0$

$$egin{aligned} (e^{i\lambda}-eta)rac{zf'(z)}{g(z)}+etarac{(zf'(z))'}{g'(z)} \ &=rac{eta}{lpha}[e^{i\lambda}(rac{lpha}{eta}-1)rac{zf'(z)}{g(z)}+(e^{i\lambda}-lpha)rac{zf'(z)}{g(z)}+lpharac{(zf'(z))'}{g'(z)}]. \end{aligned}$$

For $\alpha > \beta$, if $f(z) \in Y(\alpha, \lambda)$, then

$$Re\{(e^{i\lambda}-lpha)rac{zf'(z)}{g(z)}+lpharac{(zf'(z))'}{g'(z)}\}>0\quad (z\in E).$$

Now $f(z) \in Y(\alpha, \lambda) \subset Z_{\lambda}$ implies that $Re \ e^{i\lambda} \frac{zf'(z)}{g(z)} > 0$. Hence,

$$Re\{(e^{i\lambda}-eta)rac{zf'(z)}{g(z)}+etarac{(zf'(z))'}{g'(z)}\}>0$$

showing that $f(z) \in Y(\beta, \lambda)$.

We now show that functions in the Ziegler class Z_{λ} satisfy the defining inequality for the class $Y(\alpha, \lambda)$ on a certain disk $|z| < r_0$.

THEOREM 2.3. If f(z) belongs to the Ziegler class Z_{λ} with f(0) = 0, f'(0) = 1, then f(z) satisfies the inequality

$$Re[(e^{i\lambda}-lpha)rac{zf'(z)}{g(z)}+lpharac{(zf'(z))'}{g'(z)}]>0$$

for $|z| < r_0$ where $r_0 = (1 + \alpha) - \sqrt{(1 + \alpha)^2 - 1}$.

PROOF. If $f(z) \in Z_{\lambda}$, there exists a $g(z) \in S_p(\lambda)$ such that

$$Re \ e^{i\lambda} \frac{zf'(z)}{g(z)} > 0 \ for \ |\lambda| < \frac{\pi}{2}.$$

Let $\omega(z)$ be the regular function in E with $\omega(0) = 0$, $|\omega(z)| < 1$ for $z \in E$, given by

(2.6)
$$e^{i\lambda} \frac{zf'(z)}{g(z)} = \cos \lambda \frac{1 + \omega(z)}{1 - \omega(z)} + i \sin \lambda.$$

By logarithmic differentiation of (2.6) we get

$$1 + \frac{zf''(z)}{f'(z)} - \frac{zg'(z)}{g(z)} = \frac{(1 + e^{-2i\lambda})z\omega'(z)}{(1 + e^{-2i\lambda}\omega(z))(1 - \omega(z))}.$$

Thus,

$$\begin{split} &(e^{i\lambda}-\alpha)\frac{zf'(z)}{g(z)}+\alpha\frac{(zf'(z))'}{g'(z)}\\ &=\frac{e^{i\lambda}+e^{-i\lambda}\omega(z)}{1-\omega(z)}+\alpha\frac{(1+e^{-2i\lambda})z\omega'(z)}{(1+e^{-2i\lambda}\omega(z))(1-\omega(z))}\frac{f'(z)}{g'(z)}\\ &=\frac{e^{i\lambda}+e^{-i\lambda}\omega(z)}{1-\omega(z)}+\alpha\frac{(1+e^{-2i\lambda})z\omega'(z)}{(1-\omega(z))^2}\frac{g(z)}{zg'(z)}, \end{split}$$

where the last equality is obtained by (2.6).

In order to show that $f(z) \in Y(\alpha, \lambda)$ for $|z| < r_0$, where $r_0 = (1 + \alpha) - \sqrt{(1 + \alpha)^2 - 1}$, we observe that

$$Re \left[(e^{i\lambda} - \alpha) \frac{zf'(z)}{g(z)} + \alpha \frac{(zf'(z))'}{g'(z)} \right]$$

$$\geq Re \frac{e^{i\lambda} + e^{-i\lambda}\omega(z)}{1 - \omega(z)} - \alpha \left| \frac{(1 + e^{-2i\lambda})z\omega'(z)}{(1 - \omega(z))^2} \right| \left| \frac{g(z)}{zg'(z)} \right|.$$

By using the well known inequalities [2]

$$|\omega'(z)| \le \frac{1 - |\omega(z)|^2}{1 - r^2}, \quad |\frac{g(z)}{zg'(z)}| \le \frac{1 + r}{1 - r}$$

and

$$|1 - \omega(z)| \le 1 + |\omega(z)| \le 1 + r$$
, $(|z| = r)$,

we have

$$Re \frac{e^{i\lambda} + e^{-i\lambda}\omega(z)}{1 - \omega(z)} - \alpha \left| \frac{(1 + e^{-2i\lambda})z\omega'(z)}{(1 - \omega(z))^2} \right| \left| \frac{g(z)}{zg'(z)} \right|$$

$$\geq \frac{\cos \lambda (1 - |\omega(z)|^2)}{|1 - \omega(z)|^2} - \alpha \frac{|1 + e^{-2i\lambda}|(1 - |\omega(z)|^2)r}{|1 - \omega(z)|^2(1 - r)^2}$$

$$\geq \frac{\cos \lambda (1 - 2r - 2\alpha r + r^2)(1 - |\omega(z)|^2)}{(1 - r)^2|(1 - \omega(z))|^2}$$

$$\geq \frac{\cos \lambda (1 - 2r - 2\alpha r + r^2)}{(1 - r)^2}.$$

Since the smallest positive root of $1 - 2(1 + \alpha)r + r^2 = 0$ is $r_0 = (1 + \alpha) - \sqrt{(1 + \alpha)^2 - 1}$, f(z) satisfies the inequality (1.6) for $|z| < r_0$.

Theorem 2.4. Let $f(z) \in Y(\alpha, \lambda)$. Then w = f(z) maps the disk $|z| < r_1$ onto a convex region where r_1 is the smallest positive root of the equation

$$\begin{split} \alpha|\alpha+e^{i\lambda}| - r\{|\alpha+e^{i\lambda}|(2\alpha\cos\lambda+4\cos\lambda+\alpha) + 2\alpha\cos\lambda\} \\ + r^2\{|\alpha+e^{i\lambda}|(2\alpha\cos^2\lambda+2\cos\lambda-2\cos\lambda-\alpha) - 2\alpha\cos\lambda\} \\ - r^3|\alpha+e^{i\lambda}|(2\alpha\cos^2\lambda-2\cos\lambda-\alpha) = 0, \quad |z| = r. \end{split}$$

PROOF. If $f(z) \in Y(\alpha, \lambda)$ the integral representation formula shows that

$$(2.7) \quad f'(z) = \frac{1}{\alpha z [g(z)]^{\frac{e^{i\lambda}}{\alpha} - 1}} \int_0^z (\cos \lambda p(\zeta) + i \sin \lambda) g'(\zeta) [g(\zeta)]^{\frac{e^{i\lambda}}{\alpha} - 1} d\zeta$$

for $z \in E$ and $|\lambda| < \frac{\pi}{2}$, where the powers are taken as principal values. By logarithmic differentiation of (2.7), we obtain

(2.8)
$$1 + \frac{zf''(z)}{f'(z)}$$

$$= (1 - \frac{e^{i\lambda}}{\alpha}) \frac{zg'(z)}{g(z)} + \frac{z(\cos \lambda p(\zeta) + i\sin \lambda)g'(z)[g(z)]^{\frac{e^{i\lambda}}{\alpha} - 1}}{\int_0^z (\cos \lambda p(\zeta) + i\sin \lambda)g'(\zeta)[g'(\zeta)]^{\frac{e^{i\lambda}}{\alpha} - 1}d\zeta} \ .$$

Thus

$$Re\{1+rac{zf''(z)}{f'(z)}\}=Re(1-rac{e^{i\lambda}}{lpha})rac{zg'(z)}{g(z)}+ReF(z)$$
 ,

where F(z) is the second term of the right hand side of (2.8). Since $g(z) \in S_p(\lambda)$,

$$Re\{e^{i\lambda}\frac{zg'(z)}{g(z)}\} \le \cos\lambda\frac{1+r}{1-r}$$
.

If we let $g(z) = z + b_2 z^2 + \cdots$ and $p(z) = 1 + p_1 z + \cdots$ in F(z), a brief calculation shows that F(z) has a series expansion

$$F(z) = \frac{e^{i\lambda}}{\alpha} + \frac{\alpha \cos \lambda p_1 + e^{i\lambda}(\alpha + e^{i\lambda})b_2}{\alpha(\alpha + e^{i\lambda})}z + \cdots$$

Furthermore, F(z) is a regular function in E and hence

$$|F(z) - \frac{e^{i\lambda}}{\alpha}| \le \frac{2\alpha\cos\lambda + 2|\alpha + e^{i\lambda}|\cos\lambda}{\alpha|\alpha + e^{i\lambda}|} \frac{r}{(1-r)^2}.$$

This inequality shows that

$$ReF(z) \geq rac{\cos \lambda}{lpha} - rac{2\cos \lambda(lpha + |lpha + e^{i\lambda}|)}{lpha|lpha + e^{i\lambda}|} rac{r}{(1-r)^2} \; .$$

Robertson [6] showed that if $g(z) \in S_p(\lambda)$, then for |z| = r < 1 (2.9)

$$\frac{(1-\lambda\cos\lambda)^2-r^2\,\sin^2\!\lambda}{1-r^2}\leq Re\frac{zg'(z)}{g(z)}\leq \frac{(1+\lambda\cos\lambda)^2-r^2\,\sin^2\!\lambda}{1-r^2}.$$

Using (2.9) we have

$$egin{aligned} Re\{1+rac{zf''(z)}{f'(z)}\}\ &\geq rac{(1-\lambda\cos\lambda)^2-r^2}{1-r^2}rac{\sin^2\lambda}{\alpha}-rac{\cos\lambda(1+r)}{lpha(1-r)}\ &+rac{\cos\lambda}{lpha}-rac{2r\cos\lambda(lpha+|lpha+e^{i\lambda}|)}{lpha|lpha+e^{i\lambda}|(1-r)^2}\ &=rac{N(r)}{lpha|lpha+e^{i\lambda}|(1+r)(1-r)^2}, \end{aligned}$$

where

$$\begin{split} N(r) &= \alpha |\alpha + e^{i\lambda}| - r|\alpha + e^{i\lambda}| (2\alpha\cos\lambda + 4\cos\lambda + \alpha) + 2\alpha\cos\lambda \\ &+ r^2 |\alpha + e^{i\lambda}| (2\alpha\cos^2\lambda + 2\alpha\cos\lambda - 2\cos\lambda - \alpha) - 2\alpha\cos\lambda \\ &- r^3 |\alpha + e^{i\lambda}| (2\alpha\cos^2\lambda - 2\cos\lambda - \alpha) \;. \end{split}$$

Here, $N(0) = \alpha |\alpha + e^{i\lambda}| > 0$ and $N(1) = -4\cos\lambda(\alpha + |\alpha + e^{i\lambda}|) < 0$. Hence f(z) is convex for $|z| < r_1$ where r_1 is the smallest positive root of N(r) = 0. This completes the proof.

To discuss coefficient estimates for the class $Y(\alpha, \lambda)$ we need the following lemma which is due to Libera.

LEMMA 2. [5]. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ belongs to $S_p(\lambda)$ in E, then

$$|a_n| \le \prod_{k=0}^{n-2} \frac{|2\cos\lambda e^{-i\lambda} + k|}{k+1}, \quad n = 2, 3, 4, \cdots,$$

and these bounds are sharp for all admissible λ and for each n.

THEOREM 2.5. Let f(z) be in the class $Y(\alpha, \lambda)$. If $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$, then

$$|a_2| \le \frac{\cos \lambda (1 + |\alpha + e^{i\lambda}|)}{|\alpha + e^{i\lambda}|}$$

and

$$|a_3| \leq \frac{\cos\lambda\sqrt{1+8\cos^2\lambda}}{3} + \frac{4\cos^2\lambda|3\alpha + e^{i\lambda}|}{3|\alpha + e^{i\lambda}||2\alpha + e^{i\lambda}|} + \frac{2\cos\lambda}{3|2\alpha + e^{i\lambda}|}.$$

These bounds are sharp for all admissible α and λ .

PROOF. Let $\mathcal{P} = \{p(z); p(z) \text{ is regular in } E \text{ with } p(0) = 1, Re \ p(z) > 0\}$. If f(z) is in $Y(\alpha, \lambda)$, we can write, for some $g(z) \in S_p(\lambda)$ and $p(z) \in \mathcal{P}$,

$$(2.10) \qquad (e^{i\lambda} - \alpha)\frac{zf'(z)}{g(z)} + \alpha\frac{(zf'(z))'}{g'(z)} = \cos \lambda p(z) + i\sin \lambda.$$

Let $g(z) = z + b_2 z^2 + b_3 z^3 + \cdots$ and $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$. Then (2.10) can be written as

$$(2.11) (e^{i\lambda} - \alpha)(z + 2a_2z^2 + 3a_3z^3 + \cdots)(1 + 2b_2z + 3b_3z^2 + \cdots) + \alpha(1 + 4a_2z + 9a_3z^2 + \cdots)(z + b_2z^2 + b_3z^3 + \cdots) = [e^{i\lambda} + \cos\lambda(p_1z + p_2z^2 + \cdots)](z + b_2z^2 + \cdots)(1 + 2b_2z + \cdots).$$

On equating both sides of (2.11), we get

(2.12)
$$2(\alpha + e^{i\lambda})a_2 = (\alpha + e^{i\lambda})b_2 + \cos \lambda p_1$$

and

(2.13)

$$(3(2\alpha + e^{i\lambda})a_3 = -4e^{i\lambda}a_2b_2 + (2\alpha + e^{i\lambda})b_3 + 2e^{i\lambda}b_2^2 + (3b_2p_1 + p_2)\cos\lambda.$$

It is well known [2] that $|p_n| \le 2$ for $n = 1, 2, 3, \cdots$. By Lemma 2, (2.12) reduces to

$$|\alpha + e^i \lambda| |a_2| \le \cos \lambda (1 + |\alpha + e^i \lambda|).$$

Hence,

$$|a_2| \leq rac{\cos\lambda(1+|lpha+e^{i\lambda}|)}{|lpha+e^{i\lambda}|}.$$

Now substituting (2.12) into (2.13) we obtain

$$3(2\alpha + e^{i\lambda})(\alpha + e^{i\lambda})a_3$$
$$= (\alpha + e^{i\lambda})(2\alpha + e^{i\lambda})b_3 + \cos\lambda(3\alpha + e^{i\lambda})b_2p_1 + \cos\lambda(\alpha + e^{i\lambda})p_2.$$

By lemma 2 again, we have

$$|a_3| \leq \frac{\cos\lambda\sqrt{1+8\cos^2\lambda}}{3} + \frac{4\cos^2\lambda|3\alpha + e^{i\lambda}|}{3|\alpha + e^{i\lambda}||2\alpha + e^{i\lambda}|} + \frac{2\cos\lambda}{3|2\alpha + e^{i\lambda}|}.$$

The functions $g(z)=z(1-z)^{-2\cos\lambda e^{-i\lambda}}$ and $p(z)=\frac{1+e^{-i\lambda}z}{1-e^{-i\lambda}z}$ show that the results are sharp.

Using the second coefficient estimate for the class $Y(\alpha, \lambda)$, we obtain the following result similar to Köebe 's covering theorem.

THEOREM 2.6. Let f(z) be in the class $Y(\alpha, \lambda)$ and let ω be any complex number such that $f(z) \neq \omega$ for z in E. Then

$$|\omega| \geq rac{lpha+1}{3lpha+4}, \quad (lpha \geq 0).$$

PROOF. Let us write

$$f_1(z) = rac{\omega f(z)}{\omega - f(z)}.$$

Then $f_1(z)$ belong to S and $f_1(z) = z + (a_2 + \frac{1}{\omega})z^2 + \cdots$. Hence, $|a_2 + \frac{1}{\omega}| \le 2$. By Theorem 2.5, we obtain $|\frac{1}{\omega}| \le \frac{(2 + \cos \lambda)|\alpha + e^{i\lambda}| + \cos \lambda}{|\alpha + e^{i\lambda}|} \le \frac{4 + 3\alpha}{1 + \alpha}$. Hence, $|\omega| \ge \frac{\alpha + 1}{3\alpha + 4}$.

References

- [1] P. N. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc. (1977), 37-43.
- [2] P. N. Duren, Univalent functions, Springer-Verlag, New York, 1983.
- [3] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971), 469-474.
- [4] R. J. Libera and M. R. Ziegler, Regular functions f(z) for which zf'(z) is α -spiral, Trans. Amer. Math. Soc. 166 (1972), 361-370.
- [5] R. J. Liberia, Univalent α -spiral functions, Canad. J. Math. 19 (1967), 449-456.
- [6] M. S. Robertson, Radii of starlikeness and close-to-convexity, Proc. Amer. Math. Soc. 16 (1965), 847-852.
- [7] _____, Univalent function f(z) for which zf'(z) is spirallike, Mich. Math. J. 16 (1969), 97-105.
- [8] E. M. Silvia, On a subclass of spiral-like functions, Proc. Amer. Math. Soc. 44 (1974), 411-420.
- [9] L. Spaček, Prispevek k teorii funkci prostych, Casopis Pest .Mat. 62 (1933), 12-19.
- [10] H. Yoshikawa, On a subclass of spiral-like functions, Kyushu Univ. Series A, Mathematics 25 (1971), 271-279.
- [11] M. R. Ziegler, A class of regular functions containing spiral-like and close-toconvex functions, Trans. Amer. Math. Soc. 166 (1972), 59-70.

Department of Mathematics Ewha Womans University Seoul 120-750, Korea