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A GENERALIZATION OF
SILVIA CLASS OF FUNCTIONS

SUK YOUNG LEE* AND MYUNG SunN OH

ABsTRACT. E. M. Silvia introduced the class S of a-M-spirallike
functions f(z) satisfying the condition

i R GFEY
(A) Rel( ~ )= + a5 B0 >0,

where o > 0,|A| < § and |z| < 1. We will generalize Silvia class of
functions by formally replacing f(z) in the denominator of (A) by
a spirallike function g(z). We denote the new class of functions by
Y(a, N).

In this note we obtain some results for the class Y (e, A) including
integral representation formula, relations between our class Y(a, A)
and Ziegler class Z), the radius of convexity problem, a few coefficient
estimates and a covering theorem for the class Y (e, A).

1. Introduction

Let f(z) belong to the class S of normalized univalent and holomor-
phic functions in the open unit disk E. Let S,()) denote the class of
A-spirallike functions in E with f(0) = 0, f/(0) = 1. These satisfy

!
(1.1) Re[e“i(—-z—)-] > 0for z € E |\ <

f(2)

Spaéek [9] showed that each f in S,(\) is univalent in E.

i
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Ziegler [11] generalized the concept of close-to-convexity by formally
replacing f(z) in the denominator in (1.1) by a A-spirallike function.
That is, f lies in the Ziegler class Zj if there is a g(z) € S,(A) such that

zf'(z
9(2)

When A = 0, Z), is the class of close-to-convex functions in E.
A holomorphic function f(z) satisfying f(z)- f/(z) # 0 for 0 < |z| < 1
is said to be a-convex in F if

(1.2) Rele 2 ] >0 for z € E.

(1.3) Re[(1 — @) z]{gS) + a(z]{,l((:))),] >0forze F,a>0.

Chichra [1] introduced the class C, of a-close-to-convex functions in
E by formally replacing f(z) in the denominator of (1.3) by a starlike
function ¢(2) in S*. That is, f € C, if there exists a ¢(z) € S* such that

>0forze E,a>0.

(1.4) Re[(1 - a) ij:(,g) + a (zil’((zz)))']

Silvia [8] generalized the definition of a-convexity to a-A-spirallikeness
as follows ;

Let S2 denote the class of a-A-spirallike functions in E , where f € S)
if

(1.5) Re[(e™ — ) zj{(’i;:) + a(zJ{,/((j))),

He proved that S2 C S,()\) C S.

Now we will generalize Silvia class by formally replacing f(z) in the
denominator of (1.5) by a spirallike function g(z) in S,()). We denote
this new class of functions by Y(a, A).

DEFINITION. Let f(2) be holomorphic in F with f(0) = f/(0) -1 =
0. f(z) belongs to the class Y (a, A) if there exists a g(z) € S,(\) such
that

]>0forz€E,a20,|)\|<g.

g2 G
(1.6) Re|( P 710
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forz€ E,a>0,|A| < %.

Note that if a=0, then Y(a, \) is equal to Ziegler class Zy. If A =
0,Y (e, A) is equal to Chichra class C,,. If a=0, A=0, then Y (a, A) is the
class of close-to-convex functions in E.

In this note we prove some geometric properties for the functions
f(z) in Y(a, A). We obtain the integral representation formula for the
functions in Y(«, A). We prove that for every admissible a and A, each
function f(z) in Y (a, A) lies in Ziegler class Z and find the disk |z| < rq
so that functions in Ziegler class Z) may satisfy the defining inequality
(1.6) for the class Y(a, ). Moreover,we solve the radius of convexity
problem for the class Y(a,\) and a covering theorem as well as a few
coefficient estimates for functions in Y (a, A).

2. Main Results for the class Y(a, ))

We now obtain an integral representation for the functions in the class
Y(a, )

THEOREM 2.1. f(z) is in the class Y (a, A) if and only if there exists
a regular function p(z) with p(0) = 1, Re p(z) > 0 for z € E such that

"(2) = _t cos isin \)g’ -1
@Y S = | (eosxpt) + isin g (Q)lo(0)F e,

where the powers are taken as principal values and g(2) € Sp(A),a # 0.
If a =0, then

f'(z) = e7271g(2)[cos Ap(z) + isin A].

PROOF. If f(z) € Y(a, )), then for some regular function p(z) with
P(0)=1 and Re p(z) > 0 for z € E, we can write

o ) | GFEY
(2.2) (e a) o) +a 700
where g(z) € S,(A) and [A] < Z. .
Multiplying both sides of (2.2) by a~!¢'(z) [g(z)]si_k‘l, we have

= cos Ap{z) + isin A

A ix et
23) (=D (R (DN 2 + (2 (2)) [a(2)]
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= (cos Ap(2) + i sin Mo 1g'(2)[g(2)) % 1.

The left hand side of (2.3) is the exact differential of zf’ (z)[g(z)]%‘l.
So integrating both sides of (2.3) with respect to z, we obtain

7N = o [ (eon ol + isim N (Qp(O)F e,
and get

716 = ———— [ (eosp() + sim Mg Qlo(€)
oz [9(
In particular if a = 0, we have
a2 f'(2) _ ;o
e o cos Ap(z) + isin ),
and hence ix

f'(z) =

Conversely, if f(z) satisfies (2.1), we get,

g(z) [cos Ap(z) + zsin A].

z§<£§):a[g(i)]ei* | (eos () + isin ' (©lg(0)) F ac
and
(=f'(2))
T d(z)
—1 A F4 X
= (15 [ (eos Ap(C) + isin Ng'(Q)[g(0)] =
[9(2)] % " Jo

+ o [cos Ap(2) + isin A].

It follows that
o _ 22 | (2f(2))
e’ —a + «
S O R
which implies f(z) € Y(a, A), since Re p(z) > 0 for z € E. O

= cos Ap(z) + isin A

In order to verify that a function f(z) in Y(a, ) belongs to the
Ziegler’s class Z), we need the following lemma which is due to I. S.
Jack [3].
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LEMMA 1. [3]. Let w(z) be regular in E with w(0) = 0. If there exists
a ¢ in E such that

mazii<i¢ [w(z)| = [w(C)],
then (w'({) = kw((¢) for some k > 1.

THEOREM 2.2. For a > 0,[A| < %, let f(2) be in the class Y(a, A).
Then f(z) satisfies the condition

Re [eiA%téj—)] >0, (2€E) forsome g(z) € Sp(N),

and hence lies in Ziegler class 7.

PROOF. If f(2) € Y(a, M), let us set

azf(2) 1-w(z) .. T
(24) e ) cos/\--———1 e +isinA  (JA| < 2,g(z) € Sp(A))
where w(z) is regular in £ with w(0) = 0 and w(z) # —1 for z € E.
Since Re :=2{2) > 0 whenever lw(z)| < 1for z € E, it suffices to show

1+w(z)
that lw(z)| <1 for z € E in (2.4). Simplifying (2.4), it follows that

22 _ e — (e

(2.5) g(z) 14w(z)

Differentiating (2.5) and using the condition (1.6), we have

a_ 2@, )
. o 9'(2)

_ 1-w(z) . —i 9(2) ) —2uw'(z)
*cosA1+w(z)+zsm)\+ae ’\cos)\{g,(z) (1+w(z))2}'

Now, suppose that |w(z)| > 1 for z € E. Then there exists a ¢ in E such
that mazMS,q Iw(z)| = |w(()| =1.
By Lemma 1, {w’(¢) = kw(¢) for some k > 1. For this ¢ we have

Re ———1 —w(©) =0

1+ w({)
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and
wl() 1 .
(1+w()? 4cos2—g-’ where w(¢) = e*.
Then Cf/(C) (CfI(C)),
e IA a .
Re{(e ) T Iy L5 )

e”g(¢)  —2kw(¢)

= Relecosd=0) (1+w )2}
__akcosA , emg(() o
= 20082 5 Re{ 216 oM < 5)

Since g(z) € Sp(A), Re————(%Q >0for {€FE.
Therefore, we have

a_ Q) Q)
Rel(e” —e) "0y T gy 1 =0

But this contradicts (1.6), since f € Y(a, A).
Hence,

(Ce k).

a2f'(2)
Ree e

This completes the proof. O

>Qforze E.

COROLLARY. Ifa> 3> 0 and |A| < %, then Y(a,A) C Y(B,A).
ProoOF. For 8 =0, Theorem 2.2 shows that

Y(a,\) € Y(0,)) = Z,

-

For B #0
2 | )
(€ =B 5™ + P55
_Biae B B R
=L GV T Ay feT
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For a > g3, if f(z) € Y(a, A), then

ir _ 22 (EF(2) B
Re{( )g(z) e }>0 (z€E).

Now f(z) € Y(a, ) C Z, implies that Re e“‘-z?’;é;—) > 0. Hence,

2f'(z) | 5(=f"(2))
9(2) g'(2)

showing that f(z) € Y(3, A). O

Re{(e” - B)

+ 3 }>0

We now show that functions in the Ziegler class Z), satisfy the defining
inequality for the class Y'(a, A) on a certain disk |z| < rg.

THEOREM 2.3. If f(z) belongs to the Ziegler class Zy with f(0) =
0, f’(0) = 1, then f(z) satisfles the inequality

Re[(e" — a) z;‘(’S) + a (7‘5 ’((j)))

]>0

for |z| < rg whererg = (1 +a) — /(1 + )2 — 1.
PROOF. If f(z) € Z,, there exists a g(z) € Sp()) such that

Re “z;('()) > 0 for || < il

Let w(z) be the regular function in F with w(0) = 0, |w(2)| < 1for z € E,
given by

azf'(z) 1+w(z) ..
e -—m— os)\l—_m+zsm/\.

By logarithmic differentiation of (2.6) we get

(2.6)

2f"(2) 29'(2) _ _ (1+e7*M)a'(2)

e T e (e el i—w()
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Thus,

ir 2f'(z) | (zf'(2))
o T e
e + e Pw(z) t o (14 e %M 20/ (2) f(2)
1 —w(z) (1+ e 22w (2))(1 — w(2)) ¢'(2)
e + e~ Pw(z) (1+ e 2N 2w/ (2) g(z
O I (R ) eI )
where the last equality is obtained by (2.6).
In order to show that f(2) € Y(a, A) for |z| < ro, where rop = (1 + a) —

V(14 a)? — 1, we observe that

e + e w(2) (1+ e 220/ (2) I 9(z) |

~—

2R om Ay et
By using the well known inequalities [2]
2
lw'(2)| < . 1 l:usz); ) |z§€2)| < if:
and
1-w(z)| <1+ wk)|<1+7r (Jz|=r1),
we have
e + e Puw(z 1+ e 2N (2 z
Re S -l G g
cosA(1—|w(2)[*) [L+e X1 - |w(z)])r
ST Rw@P Y e -
cos A(1 — 2r — 2ar + 72)(1 — |w(2)|?)
N (1 =721~ w(2)I’
cos A(1 — 2r — 2ar + r2)
- (1-r)?
Since the smallest pos1t1ve root of 1 —2(1 + a)r + 72 = 0 is 1'0 =

(14 a) — /(1 + a)? — 1, f(z) satisfies the inequality (1.6) for
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THEOREM 2.4. Let f(2) € Y(a,\). Then w = f(2) maps the disk
|z2| < ry onto a convex region where r, is the smallest positive root of
the equation

ala + e —r{|a+ei’\|(2acos)\+4cos)\+a) + 2accos A}
+r2{|a+ei’\|(2acosz)\+2cos)\—2cos)\-a) —2acos A}
—r3a+ e|(2acos® A — 2cos A — a)=0, |z|]=r

PROOF. If f(z) € Y (e, A) the integral representation formula shows
that

= —r co isin \)g’ -1
2D £ = ——y | (c0s35(¢) + 55in 09’ ) la(0) % 1

for z € E and |A] < Z, where the powers are taken as principal values.
By logarithmic differentiation of (2.7), we obtain
zf"(2)
2.8 14+ ——+
2 72

e 2(@) | 2(ecosplQ) +isinN)g'(2)lg(2)] % !

>

= (1 — : |
a’ 9(z) fOZ(COS/\p(C)+iSin/\)g’(C)[gl(C)]%—1dC
Thus
Sy - C) | e,
R€{1+ f’(z }-——R(l a)g(z) +_RF()’

where F'(z) is the second term of the right hand side of (2.8).
Since g(z) € Sp(N),
in29'(2) 1+r
AT LA
Re{e o) } < cos/\1 —
Ifwelet g(z) =2+ bp22+---and p(z) = 14+ pr2+--- in F(z), a brief
calculation shows that F'(z) has a series expansion
e acos A\py + e a + )b,

F(Z):—-Cx—-f— a(a_+_eiA) 24
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Furthermore, F (z) is a regular function in E and hence

2ccos A + 2la + e cos A 1

F - —] < .
|F(2) I ala + e (1~7)2

This inequality shows that

cosA  2cosAa+ |a+e?) 7
ala + et (1—r7)2

ReF(z) >

Robertson [6] showed that if g(z) € S,(A), then for |z| =r < 1
(2.9)
_ 2 2 L2 _ 2
(1 —AcosA)® —r® sin®) < Re zg'(2) < (1+ XcosA)? — 72 sin )\-
1-1r2 - g(zx) T 1—172

Using (2.9) we have

)
(1 —AcosA) 2 —r2 gin?X  cosA(1+7)
- 1—172 T a(l-r)
N cosA  2rcosA(a+ |a+e?))
a ala+ e?|(1-7)2
N(r)

- ala+eM(1+7r)(1—7)2’
where
N(r) = ala + | ~ rla + e?|(2a cos A + 4cos A + a) + 2acos A
+7?|a + e**|(2acos? A + 2acos A — 2¢cos A — a) — 2a cos A
— 3o+ e|(2acos? A — 2cos A — @) .
Here, N(0) = ala + €| > 0 and N(1) = —4cos A(a + |a + e*}]) < 0.

Hence f(z) is convex for |2| < r; where r; is the smallest positive root
of N(r) = 0. This completes the proof. O

To discuss coefficient estimates for the class Y {a, A) we need the fol-
lowing lemma which is due to Libera.
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LEMMA 2. [5]. If f(z) = 2+ 3°2° , a,2™ belongs to Sp(A) in E, then

n—2 .
2cos e + k
[an|§H'cose M a3
k=0

k+1 ’

and these bounds are sharp for all admissible A and for each n.

THEOREM 2.5. Let f(z) be in the class Y (a, A). If f(2) = 24+ ag2% +
azz3 + .-, then '
cos A(1+ |a + e**|)

laz| <

lo + €|
and
las| < cos AV1+8cos? X 4cos® A3 + | 2cos A
3= 3 3la+ e|2a+ | 32a + |’

These bounds are sharp for all admissible o« and \.

PROOF. Let P = {p(2); p(2) is regular in E with p(0) =1, Re p(2) >
0}. If f(z) is in Y(a,)), we can write , for some 9(z) € Sp(A) and
p(z) € P,

o 0d@) . Iy
B0 ey e

Let g(2) = 24+ 02224+ b32° +-- - and p(z) =1+ piz+p2224+--. . Then
(2.10) can be written as

= cos Ap(z) + isin \.

(2.11)
(€™ — a)(z + 2a22° + 3az2% + - - - Y1+ 203z + 3b32% + - - -)

+a(1+4a2z+9a3z2+--~)(z+b222+bgz3—s----)
= [eiA+COS)\(P12+p222+---)](z+b2z2+-~)(1+2b2z+---).

On equating both sides of (2.11), we get

(2.12) 2(a+eMay = (a+ €"*)by + cos Ap;
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and

(2.13) . ‘ _ _

3(2a + eMag = —4eaghs + (20 + e”\)bg + 2eby? + (3bepy + p2) cos A
It is well known [2] that |p,| < 2 for n = 1,2,3,---. By Lemma 2,

(2.12) reduces to
lo + et M ||az| < cos A(L + |a + €°)]).
Hence ,
cos A(1 + |a + e™))
la + e
Now substituting (2.12) into (2.13) we obtain

lag| <

320 + €*)(a + €*)as
= (a + €”)(2a + e*)bs + cos A(3a + €)bap; + cos A(a + €)p2 .

By lemma 2 again , we have

las| < cos Av1 + 8cos? A 4cos®X|3a + €] N 2cos A
8= 3 3la+ e|2a + e 3|2a+ |’
The functions g(z) = z(1 — z)72°® *e™ and p(z) = i—g—:% show
that the results are sharp. O

Using the second coefficient estimate for the class Y (a, A), we obtain
the following result similar to Koebe ’s covering theorem.

THEOREM 2.6. Let f(z) be in the class Y(a,A) and let w be any
complex number such that f(z) # w for z in E. Then

1
e CEL)
PROOF. Let us write
_ _wf(®)
R =5y

Then f;(z) belong to S and f1(z) = z+(a2+%)z2+r .. . Hence, |a2+%| <

iA '
2. By Theorem 2.5, we obtain || < (2+cos AIZ’[(:-J;*I lteosh < 41':_30‘1". Hence,
+1
lwl > 3553 O
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