A SIX-POINT CHARACTERIZATION OF HILBERT SPACES

JINSIK MOK

ABSTRACT. A characterization of Hilbert spaces is given in terms of four boundary points and two interior points of the unit sphere.

1. Introduction

The goal of this paper is to present a characterization of Hilbert spaces in terms of four boundary points and two interior points of the unit sphere.

Suppose that **X** is a Banach space with norm $\|\cdot\|$. Then we obtain the following characterization of Hilbert spaces:

THEOREM. A Banach space X is a Hilbert space if and only if

$$2 \leq \frac{|u_2-x|}{|u_2-u_1|} \left| u_1+y \right| + \frac{|u_1-x|}{|u_2-u_1|} \left| u_2+y \right| + \frac{|v_2-x|}{|v_2-v_1|} \left| v_1-y \right| + \frac{|v_1-x|}{|v_2-v_1|} \left| v_2-y \right|,$$

for any x, y in \mathbf{X} with |x| < 1, |y| < 1, and any u_1 , u_2 , v_1 , v_2 in the unit sphere S_X of \mathbf{X} so that

$${x} = [u_1, u_2] \cap [v_1, v_2].$$

Here [u, v] denotes the line segment joining u and v.

2. Lemmas

To prove the theorem, we will use the following geometrical characterization of Hilbert spaces given by Burkholder [2, 3]:

Received April 10, 1997. Revised July 2, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 46C15.

Key words and phrases: Hilbert spaces, biconvex function.

This work was supported by the Basic Science Research Institute Program, Ministry of Education, Republic of Korea, 1996, Project No. BSRI-96-1439.

906 Jinsik Mok

LEMMA 1. A Banach space X is a Hilbert space if and only if there is a biconvex function $\zeta: X \times X \to \mathbf{R}$ such that $\zeta(0,0) = 1$ and

(1)
$$\zeta(x,y) \le |x+y| \quad \text{if} \quad |x| \lor |y| \ge 1.$$

For a Hilbert space H, Burkholder [3] showed that the function ζ_H given below satisfies all the conditions imposed in Lemma 1:

$$\zeta_H(x,y) = (1+2(x,y)+|x|^2|y|^2)^{\frac{1}{2}} \quad \text{if} \quad |x| \lor |y| < 1,$$

= $|x+y| \quad \text{if} \quad |x| \lor |y| \ge 1.$

Here (x, y) is the real part of the inner product of x and y.

Replacing $\zeta(x,y)$ by the maximum of $\zeta(x,y)$, $\zeta(y,x)$, $\zeta(-x,-y)$, and $\zeta(-y,-x)$, we can assume that the function ζ satisfies the symmetry property:

(2)
$$\zeta(x,y) = \zeta(y,x) = \zeta(-x,-y).$$

We also need the following lemmas from the theory of convex bodies. See [1] or [4].

- LEMMA 2. Suppose that X is a two-dimensional real Banach space. Then the norm of X is generated by an inner product if and only if the unit sphere of X is an ellipse.
- LEMMA 3. If C is a symmetric (about the origin) closed convex curve in the plane, then there exists a unique ellipse of maximal area inscribed in C. The maximal inscribed ellipse touches C in at least four points which are symmetric pairwise.

LEMMA 4. A Banach space X is a Hilbert space if and only if every two dimensional subspace of X is a Hilbert space.

3. Proof of Theorem

Suppose that **X** is a Hilbert space with norm $|\cdot|$. Take x and y in **X** with |x| < 1 and |y| < 1, and u_1 , u_2 , v_1 , and v_2 in the unit sphere S_X of **X** so that

$${x} = [u_1, u_2] \cap [v_1, v_2].$$

By the convexity of $\zeta_X(\cdot,0)$ and (2), we have

$$1 = \zeta_X(0,0) \le rac{1}{2} \{ \zeta_X(x,0) + \zeta_X(-x,0) \} = \zeta_X(x,0).$$

By the biconvexity of ζ_X and (1), we obtain a string of inequalities:

$$\zeta_{X}(x,0) \leq \frac{1}{2} \left\{ \zeta_{X}(x,y) + \zeta_{X}(x,-y) \right\}
\leq \frac{1}{2} \left\{ \alpha \zeta_{X}(u_{1},y) + (1-\alpha) \zeta_{X}(u_{2},y) + \bar{\alpha} \zeta_{X}(v_{1},-y) + (1-\bar{\alpha}) \zeta_{X}(v_{2},-y) \right\}
\leq \frac{1}{2} \left\{ \alpha |u_{1}+y| + (1-\alpha) |u_{2}+y| + \bar{\alpha} |v_{1}-y| + (1-\bar{\alpha}) |v_{2}-y| \right\}.$$

Here, we have chosen $\alpha = \frac{|u_2 - x|}{|u_2 - u_1|}$ and $\bar{\alpha} = \frac{|v_2 - x|}{|v_2 - v_1|}$ so that

$$\alpha u_1 + (1 - \alpha) u_2 = x$$
 and $\bar{\alpha} v_1 + (1 - \bar{\alpha}) v_2 = x$.

Replace α by $\frac{|u_2-x|}{|u_2-u_1|}$ and $\bar{\alpha}$ by $\frac{|v_2-x|}{|v_2-v_1|}$ to obtain the desired result:

$$2 \leq \frac{|u_2-x|}{|u_2-u_1|} \, |u_1+y| + \frac{|u_1-x|}{|u_2-u_1|} \, |u_2+y| + \frac{|v_2-x|}{|v_2-v_1|} \, |v_1-y| + \frac{|v_1-x|}{|v_2-v_1|} \, |v_2-y|.$$

For the converse, suppose that **X** is not a Hilbert space. Then we will find x, y in **X** with |x| < 1, |y| < 1 and u_1 , u_2 , v_1 , v_2 in the unit sphere of **X** with $\{x\} = [u_1, u_2] \cap [v_1, v_2]$ for which the inequality in Theorem fails.

By Lemma 4, we can assume that the dimension of **X** is equal to two. Denote the norm of **X** by $|\cdot|$. Let S_X be the unit sphere of **X** with respect to $|\cdot|$, that is, $S_X = \{x \in \mathbf{X} : |x| = 1\}$.

By Lemma 3 due to Loewner, there is an ellipse S_0 of maximal area inscribed in S_X with at least four contact points which are symmetric pairwise. Denote by $\|\cdot\|$ the norm induced by S_0 so that $S_0 = \{x \in \mathbf{X} : \|x\| = 1\}$. After some affine transformations, we can assume that S_0 is the unit circle. Let $\pm A$ and $\pm C$ be four distinct contact points with no contact points in the interior of the arc \widehat{AC} .

Let $\theta = \frac{1}{2} \angle AOC$, one half of the angle determined by the line segments \overline{OA} and \overline{OC} . Here O denotes the origin of \mathbf{X} . We can assume

908 Jinsik Mok

that $0 < 2\theta \le \pi/2$, A = (1,0), and $C = (\cos 2\theta, \sin 2\theta)$. Observe that the point $(\cos \theta, \sin \theta)$ belongs to S_0 , and so it lies inside of S_X . Thus there is a real number s > 1 satisfying $|s(\cos \theta, \sin \theta)| = 1$.

Let

$$x = \frac{A+C}{2} = \cos \theta (\cos \theta, \sin \theta),$$

$$y = y(t) = t (\cos \theta, \sin \theta), \quad t \in (-s, s).$$

Let

$$u_1 = s(\cos \theta, \sin \theta), \qquad u_2 = -s(\cos \theta, \sin \theta),$$

and

$$v_1 = (1,0), \qquad v_2 = (\cos 2\theta, \sin 2\theta).$$

Let

$$\gamma=rac{|u_2-x|}{|u_2-u_1|}=rac{s+\cos heta}{2s}\quad ext{and}\quad \overline{\gamma}=rac{|v_2-x|}{|v_2-v_1|}=rac{1}{2}.$$

Clearly we have |x| < 1, |y| < 1, and $|u_i| = |v_i| = 1$, for i = 1, 2. Since $\gamma u_1 + (1 - \gamma) u_2 = x$ and $\overline{\gamma} v_1 + (1 - \overline{\gamma}) v_2 = x$, we also have $\{x\} = [u_1, u_2] \cap [v_1, v_2]$. Let X and Y be simple functions defined on [0, 1) by

$$egin{aligned} X &= u_1 \, I_{[0,rac{\gamma}{2})} + u_2 \, I_{[rac{\gamma}{2},rac{1}{2})} + v_1 \, I_{[rac{1}{2},rac{\gamma+1}{2})} + v_2 \, I_{[rac{\gamma+1}{2},1)}, \ Y &= Y(t) = y(t) \, I_{[0,rac{1}{2})} - y(t) \, I_{[rac{1}{2},1)}. \end{aligned}$$

Let f and g be functions defined on an interval (-s,s) by

$$f(t) = 2E |X + Y(t)|$$

$$= 1 + \frac{t}{s^2} \cos \theta + |(1 - t \cos \theta, -t \sin \theta)| \overline{\gamma}$$

$$+ |(\cos 2\theta - t \cos \theta, \sin 2\theta - t \sin \theta)| (1 - \overline{\gamma}),$$

$$g(t) = 1 + \frac{t}{s^2} \cos \theta + ||(1 - t \cos \theta, -t \sin \theta)|| \overline{\gamma}$$

$$+ ||(\cos 2\theta - t \cos \theta, \sin 2\theta - t \sin \theta)|| (1 - \overline{\gamma}).$$

Then, for $t \in (-s, s)$,

$$f(t) \le g(t) \quad \text{with} \quad f(0) = g(0) = 2,$$
 $g(t) = 1 + \frac{t}{s^2} \cos \theta + (1 - 2t \cos \theta + t^2)^{1/2},$ $g'(t) = \frac{\cos \theta}{s^2} + \frac{-\cos \theta + t}{(1 - 2t \cos \theta + t^2)^{1/2}}.$

In particular,

$$g'(0) = \frac{\cos \theta}{s^2} - \cos \theta < 0 \text{ since } s > 1, \pi/4 \ge \theta > 0.$$

So there is an $\epsilon > 0$ so that $f(t) \leq g(t) < 2$ for $t \in (0, \epsilon)$; therefore

$$2E|X + Y(t)| = \gamma |u_1 + y(t)| + (1 - \gamma) |u_2 + y(t)| + \overline{\gamma} |v_1 - y(t)| + (1 - \overline{\gamma}) |v_2 - y(t)| < 2.$$

Replacing γ by $\frac{|u_2-x|}{|u_2-u_1|}$ and $\overline{\gamma}$ by $\frac{|v_2-x|}{|v_2-v_1|}$, we obtain

$$2 > \frac{|u_2 - x|}{|u_2 - u_1|} \, |u_1 + y| + \frac{|u_1 - x|}{|u_2 - u_1|} \, |u_2 + y| + \frac{|v_2 - x|}{|v_2 - v_1|} \, |v_1 - y| + \frac{|v_1 - x|}{|v_2 - v_1|} \, |v_2 - y|.$$

This completes the proof of Theorem.

References

- [1] D. Amir, Characterizations of Inner Product Spaces, Operator Theory: Advances and Applications, vol. 20, Birkhäuser Verlag, Boston, 1986.
- [2] D. L. Burkholder, Martingale transforms and the geometry of Banach spaces, Proceedings of the Third International Conference on Probability in Banach spaces, Tufts University, 1980, Lecture Notes in Mathematics 860 (1981), 35-50.
- [3] _____, Martingales and Fourier analysis in Banach spaces, C. I. M. E. Lectures, Varenna (Como), Italy, 1985, Lecture Notes in Mathematics 1206 (1986), 61-108.
- [4] V. I. Istrățescu, Inner Product Structures (1987), D. Reidel Publishing Company, Boston.

Department of Mathematics Sunmoon University Asan 336-840, Korea