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A NON-STANDARD CLASS OF SOBOLEV
ORTHOGONAL POLYNOMIALS

S. S. HaN, I. H. Jung, K. H. KwoN, aND J. K. LEE

ABSTRACT. When 7 is a quasi-definite moment functional on P, the
vector space of all real polynomials, we consider a symmetric bilinear

form ¢(-,-) on P x P defined by

¢(p, q) = Ap(a)q(a) + up(b)g(b) + (7,p'q’),

where A, p,a, and b are real numbers. We first find a necessary and
sufficient condition for ¢(-,-) to be quasi-definite. When 7 is a semi-
classical moment functional, we discuss algebraic properties of the or-
thogonal polynomials relative to ¢(-, -) and show that such orthogonal
polynomials satisfy a fifth order differential equation with polynomial
coefficients.

1. Introduction

Recently, there have been many works([1, 3, 5-10, 12, 13]) on polyno-
mials orthogonal relative to Sobolev pseudo-inner products of the form

o

(1.1) /oo p(z)q(z)duo(x) + /\/ ?'(z)q (z)dp; (x),

—00 —o00

where duo(z) and duy(x) are positive or signed Borel measures on the
real line and A is a real constant. When A = 0, we have ordinary orthog-
onal polynomials, of which the general theory is rather well developed
([2]). When X # 0, we have the so-called Sobolev orthogonal polynomials
or Sobolev-type orthogonal polynomials in case du;(z) is discrete.
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In most of works, it is assumed that either both dug(z) and du;(z)
are continuous ([6, 12]) or duo(z) is continuous and du;(z) is discrete
([13]). See [1] and references therein for an excellent survey on Sobolev
orthogonal polynomials.

On the other hand, Kwon and Littlejohn [9] (see also [3, 5]) found
several non-standard Sobolev orthogonal polynomials, which are orthog-
onal relative to a Sobolev pseudo-inner product (1.1), where dug(z) is a
discrete measure with one or two mass points and du;(z) is a classical
measure. Kwon and Littlejohn obtained such examples in classifying
all polynomials crthogonal relative to a symmetric bilinear form on the
space of polynomials

(1.2) ¢(p,q) := (o, pq) + {7,0'¢),

where o and 7 are moment functionals, which also satisfy a second order
differential equation of hypergeometric type

a(z)y"(z) + B(z)y'(z) = Any(z).

Generalizing examples found in [9], we now consider discrete Sobolev
pseudo- inner products of the form

(1.3) #(p,q) := Ap(a)q(a) + up(b)q(d) + (7,9'¢),

where A(# 0), u, and a,b (a # b) are real constants and 7 is an arbitrary
quasi-definite moment functional. Inner products such as in (1.3) with
p = 0 was first appeared in [3] and studied in general in [7].

We first find necessary and sufficient conditions for ¢(-,-) in (1.3)
to be quasi-definite and then express Sobolev orthogonal polynomials
{Rn(z)}52 relative to ¢(-,-) in terms of orthogonal polynomials {P,
()}, relative to 7. When 7 is semi-classical, we find a differential op-
erator, which is symmetric relative to ¢(-,-) and then investigate various
difference-differential relations between {P,.(x)}52, and {R.(z)}3 4 by
such differential operator and also show that such orthogonal polynomi-
als {R,(x)}52 satisfy a fifth order differential equation with polynomial
coefficients.
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2. Quasi-definiteness of ¢(-,-)

Let P be the space of all real polynomials in one variable and use
deg(p) to denote the degree of a polynomial p(x) with the convention
that deg(0)= —1. By a polynomial system(PS), we mean a sequence
{Prn(x)}32 0 of polynomials with deg(P,) = n for n > 0.

For any moment functional 7 (i.e., a linear functional on P), we
call {r, := (r,2")}32, the moments of 7 and say that 7 is quasi-
definite(respectively, positive-definite) (see [2]) if

Ap(7) := det[i1;]7 ;-0 # O (respectively, A, (1) > 0), n > 0.

More generally, for a symmetric bilinear form ¢(-,-) as in (1.2) or
(1.3), we call {¢pmn = (2™, 2")}%,,_o the moments of #(-,-) and say
that ¢(-,-) is quasi-definite(respectively, positive-definite) if

An(@) = detlgi;];_o # 0 (respectively, A,,(¢) > 0), n > 0.

It is then easy to see that ¢(-,-) is quasi-definite or positive-definite
if and only if there is a PS {R,(z)}5%., such that

¢(Rm7 -an) = Kn(sm'nxa m and n > O,

where K,,,n > 0, is a nonzero or positive constant, respectively. In
this case, we call {R,(z)}52, a Sobolev orthogonal polynomial system
(SOPS) relative to ¢(:,-) (or simply, an orthogonal polynomial system
(OPS) relative to 0, when 7 = 0 in (1.2)). We note that when (-, )
is quasi-definite, each R,(z), n > 0, is uniquely determined up to a
nonzero constant multiple.

In this work, we consider only ¢(:,-) as in (1.3), where XA # 0, a # b,
and 7 is always assumed to be quasi-definite. We let {P,(z)}2, be the
OPS relative to 7 such that the leading coefficient of P,(z), n > 0, is
n+1.

We now set

Qo(x) = L and Qula) = [ Pocs(Bdt, n>1.
Then, {Qn(x)}2, is a monic PS such that
(2.1) @n(a) =0and Q,(z) = Po_1(z), n > 1.
When is ¢(-, -) quasi-definite ?
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THEOREM 2.1. Let ¢(-,-) be a symmetric bilinear form on P x P as
in (1.3). Then ¢(-,-) is quasi-definite if and only if

(2.2) A+ p+ ApGr(b,b) #0, n >0,

where

Go(z,b) = 0 and G,(z,b) : —ZQJ b;i),()), n>1.

Furthermore if ¢(-,-) is quasi-definite, then the monic SOPS {R,
(x)}32, relative to ¢(-,-) is given by
(2.3)

1, n=0
Rn(l') — /\/JQn(b)
{ Qn(z) - A+ p+ AuGr_1(b,b)

(C_r(z,b) + %), n>1,

A+ u, n=0
(24)  ¢(Rn,Rn) = { A+ 1+ MuG(b, b)

pP? >
A+u+Aan_1(b,b)<’ noth m2 L,

and

-l‘Qn(b)

(2.5) Rn(a) = A+ p+ AuG,_1(b,b)’

n>1.

PROOF. Assume that ¢(,-) is quasi-definite and let {R,(z)}2, be
the corresponding monic SOPS. Then

#(Rm, Rn) = ARm(a)Rn(a) + R (b)Rn(b) + (7, R, RY,)
= K,.0mn (m and n > 0),

where K,,, n > 0, is a nonzero constant. In particular, we have

(2.6) A+p#0
(2.7) ARp(a) + pRy(b) =0, n > 1.
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For n > 1, we can write R/ (z) as
n-—-1
R (z) = Z Cr;Pj(z), n>1.

=0

From the orthogonality of { P, ()}, relative to 7 and (2.1), we obtain:

~pR,(O)Qya(b) | _ . _

(2.8) Cry = mEpy o sIsnTE
. " ¢(Rn:1?fn) — /J'Rn(b)Qn(b) i=n—1
(r, Pr%—-1> 7=
and so
n—1
29) Fyfa) = o p (@) - wha(9) Y Tt
ytn—1 7=0 Ll

Integrating (2.9) from a to z, we obtain by (2.7)

210) (o) = T 00 (@) - wRu(9)(Gule,) + 1)

1t n—1

Evaluating (2.10) at z = b, we have

Ad(Ry, )
(r, P2_1)

14t m—1

(2.11) [A + 1+ AuGa(b,b)]Ra(b) = Qn(b), n > 1.

Now we shall show that A + p+ AuG,(b,b) # 0 for n > 0. For n = 0,
A+ p # 0 by (2.6). Assume A+ p + AuGp(b,b) = 0 for some n > 1.
Then by (2.11), we have Q,(b) = 0 and so A + g + AuG,_1(b,b) = 0
and @, 1(b) = 0. Continuing this process, we obtain Q,(b) =b—a =0,
which contradicts the assumption a # b. Thus, by (2.11), we obtain

AP(Ran, Rn)Qn (b)

(2.12) Ry (b) = (A + p+ AuGr(b, b)) (T, P3—1> ’

n > 1.
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On the other hand, we have from (2.8)

(2.13) ¢(Bn, Ry) = pRo(0)Qn(b) + (1, P31, n> 1
since Cy, ,—1 = 1. Hence, by (2.12) and (2.13), we obtain
(2.14) R,(b) = AQn(b) n > 1.

A+ -+ ’\F"Gn—l(b’ b),

From (2.10), (2.13), and (2.14), we obtain (2.3) and (2.4). Finally, (2.5)
follows immediately from (2.1) and (2.3) since G,(a,b) = 0, n. > 0.

Conversely, assume that (2.2) holds. Define R,(z) by (2.3). Then
{Rn(2)}72 is a monic PS. By using Qn(a) = 0,n > 1 and Gy (a,b) =
0,n > 0, we can easily show that (2.7) and (2.14) hold. For 0 < k < n,
we have

¢(Rn, Q) = ARn(a)Qx(a) + uRy (b)Qx(b) - (T, R, Pr_1),

where
P()((L’) = 1, n=1
R, (2) = MiQu(b) = Q;(0)Pi_s(2)
" n— - ) > 2.
Faa(@) = S e, 1(5,b) J; TP2 > ne

Hence, we have by (2.7) and (2.14)
&(Rn, Qo) = AR, (a) + pR,(b) =0, n > 1;

=0, 1<k <n.

Also for k = n, we have

¢(Rn, Bn) = ¢(Rn, @n) = ARn(a)Qn(a) + uR(b)Qn(b) + (1, P2_,),
A+, n=>0
= { A+ p+ ApGy(b,b)

P2 ,>1
A+IL+/\[LGn_1(b,b)<, n— 1) nz1,

which are nonzero by (2.2). Hence, {R,,(z)}32, is a monic SOPS relative
to ¢(-,-) and so ¢(-,-) is quasi-definite. ]
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COROLLARY 2.2. (i) (cf. Theorem 2.1 in [7]) If u = 0, then ¢(-,-)
is quasi-definite (respectively, positive-definite) if and only if A # 0 (re-
spectively, A > 0 and 7 is positive-definite).

(i) If A+ p4 AuGr(b,b) > 0 for all n > 0 and T is positive-definite, then
@(-,-) is positive-definite.

3. Difference-differential relations and differential equations

For a moment functional ¢ and a polynomial f(z), we let ¢’ and fo
be the moment functionals defined by

(0/,9) = —(o,9) and (fo,g) = (0, fg), g€ P.

Then, we have the Leibniz rule :

(fo) = flo+ fo

We now assume that 7 is a semi-classical moment functional (cf.[14))
satisfying

(3.1) at’ = BT,

where a(z) and §(z) are polynomials with deg(a) > 0 and deg(c’ + f)
>1.

LEMMA 3.1. (cf.Theorem 3.8 in [11]) For any polynomial v(z), we
have

(32) (7, (v[aD?+8D][p)q) = (r,p'(v[aD* + BD][g])), p.q € P,

where D = d/dx and D? = a‘%.
PROOF. We have, by (3.1) and the Leibniz rule for 7

(1, (v [aD?*+ 8D][p]) ¢)
= (7,(y[aD? + 8Dl[pl¢')’ — v [aD* + BD][pl¢")
= —(yar',p"¢') — (v',v8p'd) - (7,7 [aD? + BD][plg")
=(r,(v8)'P'd) + {(var),p'¢") + (7,v0p'q"")
= (1,p'(7[aD? + 8D][g])")
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since yar’ = @7 for any polynomial v(z). O
We now define a linear operator F on P by

(3.3) F = f(z)la(z)D* + B(=z) D],

where f(z) = (z —a)(xz — b).

Then we obtain :

PROPOSITION 3.2. (cf. Theorem 3.2 in [12]) The linear operator F
is symmetric relative to ¢(-,-), that is,

(3.4) #(Flpl,q) = ¢(p, Flq]) (p,q € P).

ProOF. Since f(a) = f(b) = 0, ¢(Flpl,q) = (v, F[p|'q’). Hence, by
(3.2) we obtain (3.4). O

From now on we always assume that 7+ is a semi-classical moment func-
tional satisfying (3.1) and ¢(-,-) is quasi-definite. The PS’s { P,(z)},,
{@n(z)}3X,, and {R,(x)}52, are the same as in Section 2.

Note that the linear operator F maps a polynomial of degree n into
a polynomial of degree at most n + ¢, where

(3.5) t := max{deg(c), deg(B) + 1}.

From the symmetrical character of the linear differential operator F
relative to ¢(-,-), we can obtain various difference-differential relations

among {Rn(2)}720, {@n(2)}720, and {Pn(x)}7L0.
THEOREM 3.3. We have the following difference-differential relation:
n+t—1

(3.6) FlR (x)= > anPilz), n>t+1,

i=n—t—1

where og,; = ¢(R’Z’Tfpg)‘ 1), n—t—1<i1<n+t-—1,

n+t

(3.7) FlQnl(x) = Y BriRi(z), n>t,

i=n—t
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Whereﬂni:%iﬂ)dl—), n—t<i<n+t, and
n+t

(3.8) Z TiRi(x), n > ¢,
t=n—t

Where’yni:%%u, n—t<i<n4+t.

PROOF. Since degree of the polynomial F[R,](x) is at most n +¢, we
can express F([R,)'(z) as

n+t—1

FlRa)(x) = Y aniPi(a).

i=0
For 0 <k <n+t—1, we have by (3.4)

ank(T, PE) = (7, F[Ra) Pi) = (7, F[Rn] Qicy1)
= ¢('7:[R"l]7 Q’H—l) = ¢(Rn7‘7:[Qk+l])'

Hence, apx = 0for k <n—¢t—1 and

¢(Rn) }-[Qkﬁ-l])
(r,P2)

Qnk = ,yn—t—1<k<n+t-1.

Similarly, we can write F[Q,](z) as

n+4t

F(Qn)(z) = Z PriRi().

=0
For 0 < k < n +t, we have by (3.4)
Brk®( Ry, Ri) = ¢(F|Qn,, Pi) = $(Qn, F[Ri))
= <T, Pn_.lf[Rk]l>.
Hence we have G, = 0 for k <n — ¢ and

(P FIRD)
¢(Rk7 Rk) '

Bk = —t<k<n+t
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We also have
n+t

FIR(@) = 3 v Ri(a).
=0

By using (3.4) and the orthogonality of {R,(z)}_,, we have Y, = 0
for k <n—tand

_A¢(RnafTRkD

nk = , n—t<k<n+t
Tk = T (R, Ry) : =

As a semi-classical OPS, {P,(x)}5, satisfies the three term recur-
rence relation (see [2]) ;

Pn+1(x) = (anx‘—ﬂn)Pn(m) — 'ann-—l(m): n=>0

(3-9) (_P_l(x) =0 and apv,+1 #0,n > 0)

and the structure relation (see [14]) ;

n+§—1
(3.10) a@)Py(z)= >  anBi(z), n2s+1,

i=n—s—1

where s = max{deg(a) — 2,deg(f) — 1} and § = deg(a).

In the following, we will denote by m(z,n) a polynomial of degree
at most k (k is independent of n) such that its coefficients may depend
on n. Also the polynomial mx(z,n) may not be the same in different
formulas even though we use the same notation m(x, n).

By (3.9), (3.6) and (3.10) can be written as

(3.11) FRn) (z) = m—1(z,n) Py () + me(z,n) Ppor(x)
and
(3.12) a(z)Pl.(z) = ms_1(x,n) Pu(z) + 7s(x,n) Prao1(z).

Differentiating (3.11) and then multiplying by a(x), and using (3.12),
we obtain

(3.13)  a(x)F[Rn)"(z) = mys(@,n) Po(x) + Tps41(z,n) Paoi ().
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Again differentiating (3.13) and multiplying by «(z), and then using
(3.12), we have
(3.14)

a(z)(a(z)F[Rn]") (2) = Teq2s41(2,7) Po(T) + Meposp2(2,n) Po_1(2).

By (3.11) and (3.13), we also have
(3.15)
Tovts(€, 1) Po(z) = 7e(2,n) () FRn]" () + Ters41(x, n) FR,] (2)

and
(3.16)
Tor4s(T, M) Poo1(x) = m_1(z, n)a(z) F[Ry)" (z) + mirs(z, n) F[RL) ().

Now from (3.14), (3.15) and (3.16), we obtain the following :

THEOREM 3.4. When 1 is a semi-classical moment functional satisfy-
ing (3.1), the monic SOPS {R,(z)}5%, relative to ¢(-,-) satisfies a fifth
order differential equation with polynomial coefficients :

A(z,n)F[R,]" (z) + B(z,n)F[R,]"(x) + C(z,n)F[R,] (z) = 0,

where deg(A) < 4t + 2s + 25, deg(B) < 4t + 3s + §+ 1, and deg(C) <
4t + 4s + 2.

4. Examples

In this section, we shall consider the case when 7 is a classical moment
functional. It is well known that if an OPS {P,(z)}S2, relative to 7 is
classical, then, by Sonine-Hahn characterization (see [4, 15]), { P.(z)}32,
is also classical.

EXAMPLE 4.1. The Laguerre case

Let 7 be the moment functional defined by the weight function(or
distribution) w(z) = z3T'e™® on [0,00), @ # —2,-3,---. In this case,
the corresponding orthogonal polynomials are the Laguerre polynomials

given by

)k
L @) = (1™ 1”'2 <nn+a 1>( R
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and (7, (L)) = n(n)l(n+ ), n > 1 (see [2]).
Hence,

¢1(p, ) = Ap(a)q(a) + up(b)q(b) + (x5 e ", p'q)

is quasi-definite if and only if A + u + AuG,(b,b) # 0, n > 0, where

L (@) - L2 @) k) - 1)

™
Gnla8) = iGNG + o)

Jj=1

When ¢1(-,-) is quasi-definite, by Theorem 2.1, the monic SOPS
{Rn(x)}3, relative to ¢1(-,) is given by

1, n=20

L) - L (a))
A+ o+ MuGr_1(b, b)

X (Gp-1(z,b) + ;), n>1

Ru(z) = | (L) - L))

and

A+ p, n=1_0
¢1(Rn, Ry) = { A+ g+ MG (b, b)
A+ p 4+ MGy (b, b)

n(n)l(n+a)!, n > 1.

It is well known that the moment functional 7 satisfies the following
functional equation
' =(1+a-a)r

Now let F be the linear operator on P defined by
F:=(z—a)(z-b)[zD*+ (1+a—z)D].
Then, by Theorem 3.3, we obtain

n+1

FlR ()= Y anil®V(z), n >3,

i=n—3



A non-standard class of Sobolev orthogonal polynomials 047

where
A4+ AuGr(bb)
Qnn_3 = )\+u+)\an_1(b,b)n mn-1)(n+a)(n+a-1)
R, FIL'Y
Qi = 91 Lin) n—-2<i<n+l

C+1)e+)E+a+ 1)V

Moreover, { R, (x)}32, satisfies a fifth order differential equation with
polynomial coefficients :

A(z,n)F[Rn]" () + B(z,n)F[Ra]"(z) + C(z,n)F[R.) (z) =0,

where deg(A) < 10,deg(B) < 10, and deg(C) < 10. When a = —1,u =

0,and a =0, R,(z) = %HLSZ‘U(J?), where R,(0) = 0, n > 1(see [5, 9]).

ExXAMPLE 4.2. The Jacobi case
Let 7 be the moment functional defined by the weight function (or dis-
tribution) w(z) = (l—x)Sr"_*'l(1—{-:45')3)_+'l on [—1,1], where o # —2,-3,--- ,
B #—2,-3,---,and a+ 0 # —4,—b5,---. In this case, the orthogonal
polynomials are the Jacobi polynomials given by
(@+1,841) = (ks (n-ltﬁ) k k—1
« 3 n—k— ¢ —k—
']n—l (.’L'):TLZ W)—((E—l) (\l‘"‘l)n ,TLZ].
k=0 n—1
and (7, (JEOTPTD)2) = 92ntetBiln2(n 4 o+ S+ 1) - B(n+ a+ 8+
1,n)-B(n+ a+1,n+ B+ 1), n > 1 (see [2]), where B(-,-) denotes the
beta function defined by
[(z)l'(y)
B = .
(z,y) T+ )

Then, by Theorem 2.1,
$2(p, q) = Ap(a)g(a) + up(b)g(b) + (1 - )5 (1 + )T, P
is quasi-definite if and only if A + p + AuG,(b,b) # 0, n > 0, where

" (I (@) = I @) ) - T ()

Gn(zab) :j; 22j+a+5+1(]’ + o+ ﬁ—+— l)B(j +a+ /3+ 17.])

1
X =, n> 1.
B(j+a+1,7+ 83+ 1)52
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When ¢(:,-) is quasi-definite, by Theorem 21, the monic SOPS
{Rn(x)}22, relative to ¢o(-,-) is given by

1, n=20

Ml () ~ 7i*7(a))
A+ g+ AuGr_1(b, b)

X (Gp-1(z,b) + :1\—), n>1

Ra(z) = { (J&P(2) = P (a)) -

and

A+, n=20
A+ p+ AuGr(b,b)
A+ p+ ApGr_1(b,b)
xBn+a+p+1,n)-Bln+a+1,n+8+1),n>1.

$2(Rn, Rn) =

n22?ntetBtin L o+ 8 +1)

In particular, when a = 1, b = -1, and a = g = —1, {Rn(z)},
is {Jr(l_l’—l)(x)}g":o, where we note that J,(L_l’~1)(:t1) =0 for all n > 2
(see [5,9]). In this case, Gn(—1,~1) = 2, n > 1 and so ¢o(,-) is quasi-
definite (respectively, positive-definite) if and only if A + u # 0 and
A+ p+ 22 # 0 (respectively, A + 1 > 0 and A + p + 2Au > 0), which
exactly agree with the result by Kwon and Littlejohn ([9]).

It is well known that the moment functional 7 satisfies the following
functional equation

(1-2)" =la+B+2+(a— B)zx]r.
If F is the linear operator on P defined by
F=(x~-a)z-b[(1-2*)D*+ (a+8+2+(a— B)z)D],

Then, by Theorem 3.3, we have

n+1
FR,]'(z) = Z am'Ji(aH’BH)(x), n>3,

i=n—3
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where

(n = 2)(3 —n+a - B)gs(Rn, Rn)
(r, (S5 )2

$2(R, FIIP)
( (J(a+1 ,B+1))2‘> )
’ _7 /

Unn-3 =

Qpi =

—2<i<n+1l

Moreover, {R,(x)}32., satisfies a fifth order differential equation with
polynomial coefficients :

Az, ) F[Rn]" () + B(z,n)F[Rn]"(2) + C(2,n) F[R,) (z) = 0

where deg(A4) < 12, deg(B) < 11, and deg(C) < 10. When a = 8 =

“LA=p#0,a=1and b= -1, Ru(z) = 2745 V(a).
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