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CONFORMAL TRANSFORMATIONS OF
DIFFERENCE TENSORS OF FINSLER
SPACE WITH AN (a,()-METRIC

YONG-DUK LEE

ABSTRACT. In the Finsler space with an («, 3)-metric, we can con-
sider the difference tensors of the Finsler connection. The properties
of the conformal transformation of these difference tensors are inves-
tigated in the present paper. Some conformal invariant tensors are
formed in the Finsler space with an (o, 8)-metric related with the
difference tensors.

1. Introduction

Let F™ = (M",L(a,3)) be an n-dimensional Finsler space with an
(a, B)-metric L(a, 8). The fundamental function L(a,f) is a positive
homogeneous of degree one in o and 8, where a = y/a;;(z)y'y? is a
Riemannian metric and 8 = b;(x)y* is a differential 1-form in M™. In
F™, the Riemannian space R = (M™, a) is called an associated Rie-
mannian space with F™ and the Riemannian connection constructed
by o is called the associated Riemannian connection with F™, which
is denoted by the Christoffel symbol {jik} of R*. In F™, the differ-
ence tensors of the Finsler connection are given by the differences of the
h-connection coefficients of the Finsler connection and the associated
Riemannian connection. The fundamental Finsler connections are the

i

Cartan connection CT = (I'*;*,,G*;, C;*,) and the Berwald connection
Bl = (G,*,,G";,0). We denote the difference tensors of CT' and BT by
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Dj',,' D', that is, D;*, =%, — {;4,}, 'D;’, = G, — {;,} respec-
tively. It is well known [7] that 1f the covariant vector b; is parallel with
respect to the Riemannian connection, then D;*, = 0 and the space be-
comes a Berwald space. In the present paper, we consider the conformal
transformation of D;’,, D]z  and some conformal invariant tensors in
the Finsler space with an (a, 3)-metric. Throughout the present paper
we shall use the terminologies and notations in Matsumoto’s monograph

5],

2. Preliminaries

We shall consider an n-dimensional Finsler space F™ = (M", L(a, 3))
with (o, 8)-metric L(e, 8). It is well known [7] that the fundamen-
tal tensor g;;(z,y) = 8 & L*(x,y)/2, the angular metric tensor h;;
L, 8 L and the Cartan C-tensor Cjx(z,y) = 8ng¥ (z,y)/2 are g1ven by

9ij = Paij + pobib; + p_1(b;Y; + b;Y;) + p_oYiY,
(2.1) hij = pai; + qobib; + q_1(b:Y; + b;Y;) + q_2YiY;,
2pCijk = p1(hijmy + hjem; + hgm;) + T_1Mim;mg,

respectively, where we put

Y;=ai;4°, p=LL,a™', py=qo+ L3,

p-1=q1+L 'pLs, p_s=gq_o+p°L7?
(2.2) g-1=LLasa™", g.g=La *(Loa — Laa™?),

T_1=ppos — 3p—190, i =b; —a 0Y;,

Lo =0ul(a,B), Lg=083L(,B), gqu=LLpp.

In the following, we shall take the symbols used in [7]:

bjk = 8b;/0z* — b.{;" .},
(2.3) Ejx = (bjk + bxs)/2 = b(jny,
Fik = (bjk — brj)/2 = bjjx).-
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A direct calculuation leads us to
vk = {*;} + N*Eyj; + N.F¥; + N F*; + {0°;}CiF,
(2.4) + {osi}cjks —{0°m} 9™ Cijs + bo; K*; + boi K*
— bomg™ Kij,
where we put
(25) Ni = pobx +p_1Ys, N'=g™N,, F*' =g¢"F,,
Kir = {p-1(aix — a 2YiYs) + pogmimi }/2, K*; = ¢""K.;.

For the symmetric tensor K;, and covariant vector Ng, we get
(2.6) Kio=0, No=poB+p_10®=q, O;Ny=2Ky.
where the suffix “0” means the contraction by y*.

Putting 2G* = 7o',, we have from (2.4)
(2.7) G* = ({o%0} + N*Eoo + 2gF"0)/2.
The non-linear connection G*; = 3j G" is obtained as follows:
G'5 = {j'o} + N'Ejo + N;Flo + (K';

(28) m i i m i
— N™Cr';)Eoo + q(F*; — 2F"C5" ).

The Cartan h-connection I'™* ji . of the Finsler space with an («, §)-metric
is well-known [7] as follows:

I =% + 8" CikrGm — C' G5 — Ci' Gy
= {;*.} + N'Ej + N;jF'y + Np F'j + bo; K + bor K
— bomg™ Kij — (Cj' A™k + C' 1 A™ — Crajk A™ 59%°)
+ X (C C™ + Cr' O™ — C™Cm’s),

(2.9)

where we put

A" = K™y Ego + N"Ego + Nt F™o 4+ qF ™,

(2.10) A = N°Egy + Zquo.
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From (2.3) and (2.6), we have A™xy* = A™. In the Berwald h-
connection G;*, = 0xG%; of the Finsler space with an (e, B)-metric,
we get

Gyt = {i"s} + N'Bj + NeF'; 4+ NiFéi + g™ Km0 Eoo
(211) +2(K*jEgo + K'kEjo + KjkF'0) — 25(j5){Cm’;A™ 1}
+2°(2C5°,,Cs™ — Cs' k)
where we put
Csij(k) = 8k03ij’ ij(k) = 3kaj,

S {Crm' s ATk} = Co®j A + Ci' A™.

From(2.9), the difference tensor of the Cartan connection CT is given [7]
as follows:

Dj'y = N'Eji + NjF'i + NpFj + bo; Ky, + bor K

(2.12) —bomg"" Kkj = (Cm®jA™k + Crn' k A™j — Crnji A™ 4g"%)
+ A%(Cy* O™k + Ckl O™, — C™C ).

Next, from (2.11), the difference tensor of Berwald connection BT is
given by

'Dj'y, = N'Ejj + NoF'j + N;F'y, + g™ K Eoo
(2.13) +2(K*jExo + K'kEjo + K Fo) — 28 i1y {Crm’ ;A 1}

=X [k —Cjf G = GG + €L, Gy,

where C,* j |k is v-covariant derivatives of C,’ ;-

The (v)hv-torsion tensor P;*, is given by the difference of (2.9) and
(2.11) as follows:

Pjik = Gjik - F*jzk
(2.14) = Sy {K  sbok — Cr' AT} — X°C; i
+ g% (Kjkbot + Coji A™; + Kijk)Eoo)-

The tensors above are used later.
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3. Conformal Transformations of the Cartan and the Berwald
connections of the Finsler space with an (o, 8)-metric

A transformation of a Finsler space F™ = (M™, L(a,(3)) to another
Finsler space ' = (M™, L(a, B)) satisfying

(3.1) L(a,f) = e’ L(a, B), (0 = o(x))

is called a conformal transformation of a Finsler space with an (a, 8)-
metric. A conformal transformation is a homothetic transformation if
oj = 0, where 0; = 0o/0z;. Under the conformal transformation of the
Finsler space F™ = (M", L(a, 3)), we have the following relations

(3.2) (it =) + 058" + 0xdy® — otajy,

(33) bi]’ = e"(b,-j - Uibj -+ aijambm),

Eij = CU(E,'J' — O’(ibj) + aijambm), Fij = e”(Fij e O'[ibj]),

— -k

(3.4)
Eoo = €7 (Eoo — 00y + ?omb™), F ; =e 7(F*; — g*op,by),

Ni=€"Ny, §=¢€%q, G_o=€ g5, By=npo,
.

(3.5) . — .
N “E_UNZ sz—e K,k, Kk—e Usz.

From the relation (2.10), (3.4) and (3.5), we get the transformation for-
mula

(3.6) AT =A™+ RV o, N =A™+ R™g,,
where we put

R™ ) = K™ (a®b" — y"bo) + N™{Yib" — (y"bx + d5bo)/2}

(37) mlyser r ml(sr 4
~ {Nkg™ (07 b0 — y"br) + qg™ (8] b, — O5b1)}/2,
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(3.8) R™ = N™(a®b" — y"bo) — 2q9™ (67b0 — y"b1)/2.

We shall investigate the connection coefficients of the Cartan and the
Berwald connections of a conformal transformation in the Finsler space
with an (e, B)-metric. By (3.2), (3.4) and (3.5), the conformal transfor-
mation of (2.7) is reduced to the following forms

(3.9) G = ({0} + N'Eoo + 2F0)/2 = G' - B"a,,
where we put
B = {a2a" — 2"y + N'(y by — a2b")

+ 99" (67bo — y"br)}/2.

Next, differentiating (3.9) with respect to y*, we have

(3.10)

(311) é’Lj = 3jGi - 8'3-(3"0,) = Gij - BirjO'r,
where we put
B = Yja" — y'8] —y 6k + N{(87bo + y7b;)/2 — Y367}
(3.12) + (Njg" — 2qCH)(87bo — y"br)/2 + q9" 6751
+ (K*; — NiCH)(y"bo — o2b7).
Furthermore, differentiating (3.11) with respect to y*, we obtain
(3.13) Gi'j = G5 — (B jo,) = G4, — Bijo,,
where we put
;7,; — ;7]; + Ni(é[’}bk] - ajkb’") + 2S(jk){(Kik
— NiCY) (8700 +y7b5)/2 = Y3b"} + {K kg™ — S (N;C)
— 4Cx) }&Tbo — y7b1) + Sk {(Nsg™ — 29C™ ;) 61by}
+ {gllKlj(k) - NlC;l(k) — 2S(jk) (Kle,il)}(y’"bo — aQbT),

(3.14)

ir ir i ST 1 LT

Therefore, we have the following
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THEOREM 3.1. Under the conformal transformation of the Finsler
space with an (o, §)-metric, the connection coefficients of G;*,, G*; of a
Berwald connection BT are transformed as (3.11), (3.13) respectwely

From the relations (3.3), (3.4), (3.5), we can prove easily the following.
THEOREM 3.2. The tensors B*;, B;'.’,"c are invariant under the confor-

mal transformation of the Finsler space with an {(a, 3)-metric .

Next, we shall calculate the transformed quantity r jz . of the Cartan

connection coefficient I'*;*, under the conformal transformation. Using
(3.2), (3.3), (3.4), (3.5) and (3.6), we can see that (2.9) is transformed
to the following forms

F*jlk = m + NdiEjk + .ﬁjfik + Nkﬁij + on_K—ik
+ b0k K 5 — bomG ™K rj — (Co' ;A" k + Co kA"

(3.15) — Cmjn A" 57") + X (Cy* . Cs™ ) + Cl ™
- F*jmk - ;':Tk‘o-’f‘)

where we put

o= Qi + N (67;bky — azib”) + Sk [(N5™)87,bg
+ K j(y bk — Yib") — N™C;* {(y"bi + 05bo)/2 — Yibr}]

kG (Y b — Yiub") — (C; K™k + Ci' K™,

— Cikmg K™ )(y bo — azbf) N"Clikmg"*{(y"bs
+85b0)/2 — Y07} — g™H(Cy*, Nk + Cr' i N;
— CiemN*)(87bo — y"b1)/2 — qg™ (C}*,, 6h by
+ Cr' mlibs) — Cikmg™ by} + (C5' O™ + CiP i Cs™
— G Cn " ){N*(y"bo — ob7) + qg**(87bo ~ y"by)}.

From the properties of conformal transformation formula (3.2), (3.3),
(3.4), (3.5) and (3.6), we find

THEOREM 3.3. Under the conformal transformation of the Finsler
space with an («, 3)-metric, Jk 18 Invariant and symmetric in j, k.

(3.16)
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4. Conformal transformation of difference tensors in the
Finsler space with an (a, 3)-metric

From the difference of (3. 2) and (3. 13) we have

(4.1) TJ k= GJ r— Ut '} =Dy’ ’Tﬂ Tr,
where ' ;7,; =B} - *%- From (3.14), we have

"Tji = N'(8;bk) — ajib”)
+ 280k {(K*x — NiC*4)(85bo + y7b;) /2 — Y;b7}
(4.2) + (Kikg" = Sy {N;C*x} — oC ) (6700 — y"by)
+ Sm {(NV39" - 2aC3)obi} + (9" Ky — NiC¥ i)
— 2501 {Ki;C{'}) (y7bo — o207).
Thus we have

THEOREM 4.1. A difference tensor 'D,*; of the Berwald connection
of the Finsler space with an («, ﬁ)-metric is invariant under the confor-
mal transformation if and only if 'T ’,:ar =0.

Secondly, we shall calculate the conformal transformation of difference
tensor D;*, of CT. From (3. 2) (3.15), we have

(4.3) EJ k =T ik E} = Djik—TJ?ZG“
where T]’,’; = U;Z — Q7. From (3.16), we find
Gk = N'(O7bx) — ajud") + Sy [(N;9%) 87 by,
+ K*(y"b — Yib") = N™'C5* {(y"bk + 83bo) /2 — Yib"}]
kg (Y bm — Yiub") — (C; K™k + Cil K™
— Cikmg " K™s)(y"bo — @287) + N™Cjpmg™ { (b
+65b0)/2 — Y, b} — g™H(C}' Ni + Cx' o N;
~ CikmN*)(87bo — y"by) /2 - qg’"l(Cg mOf1bk]
+ C' m8hbs) — Cikmg™8bg) + (G5t Cs™x + Ci¥ nCs™;

— C™;Cm’ ){N*(y"bo — a®b") + qgsl(6l bo — y"b1)}.
Thus we have

(4.4)
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THEOREM 4.2. The difference tensor D;*, of the Cartan connection
is invariant under the conformal transformation of the Finsler space with
an (a, 8)-metric if and only if Tiror =0.

Thirdly, we shall consider that the (v)hv-torsion tensor Pji , under
the conformal transformation of the Finsler space with an (a, B)-metric.
From (3.13), (3.15), we get the following equation

% * 1

D 1 T % ir
(4.5) Pijp=Gj =T =P —Vigor,
where j’z = B;’,; - ;; From (3.14), (3.16), we get the following

Vit = Siim K" (kb — Yib™) — N™Cr’ {850 + y7bx) /2
— Yib"} + {(C*; Ny + C*4N; — CL;6N?) /2
+ (Kjrg® — qCitx)) HOFbo — 47b) + K kg™ (y"bs — YabT)
— N'Cjrg"*{(y"bs + 05b0) /2 — Yb"} — (Ki;CY + KiC¥,;
— K'Ci — g Kij) + NiC™ ) (y"bo — @207)
— a{Cii' g™ (87bay) + C™5(&big) + Ci(67b1)}
— (G5 hCs™ s + Ci' G — G ™ Co ) {N®(y b — a2b")
+qg" (7bo — y"b1) }.

Thus we have, from (4.5)

(4.6)

THEOREM 4.3. A Landsberg space remains to be a Landsberg space
by a conformal transfor mation of the Finsler space with an (o, 3)-metric
if and only if Vicor =0.

From (3.4), (3.5), (4.2), (4.4) and (4.6), we find

THEOREM 4.4. The tensors ‘T, T}, % are conformally invariant.

References

(1] P. L. Antonelli, R. S. Ingarden and M. Matsumoto, The theory of sprays and
Finsler spaces with applications in physics and biology, Kluwer Academic pub.,
1993.



984 Yong-Duk Lee

2]

M. Hashiguchi, On conformal transformations of Finsler metric, J. Math. Kyoto
univ. 16 (1976), 25-50.

M. Hashiguchi and Y. Ichijyo, On some special (a, 3)-metrics, Rep. Fac. Sci.
Kagoshima univ. 10 (1977), 19-25.

M. Matsumoto, A Finsler connection with many torsions, Tensor N.S. 17 (1966),
217-226.

, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha
press (1986).

» Theory of Finsler space with (a, B)-metric, Rep. Math. phy. 31 (1992),

43-81.
C. Shibata, On Finsler spaces with an (@, B)-metric, J. of Hokkaido univ. of
Education 35 (1984), 1-16.

Department of Mathematics
Yeungnam Junior College
Taegu 705-037, Korea



