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INTEGRAL FORMULAS FOR STRIPS
YonG IL KiMm

ABSTRACT. For n random strips chosen so as to meet a fixed bounded
convex set K of the plane we let v be the number of intersection regions
that meet K. We develop the integral formula for the mean value of
v and 12 involving the area and the perimeter of K and the breadths
of the strips. We get some geometric inequalities in way of studying
integral geometry.

1. Introduction

The study on integral geometry is originated with Buffon’s needle prob-
lem which is stated and solved by Buffon in his Essai d’Arithmétique
Morale. And the title “Integral Geometry” was initiated by W. Blaschke
and his school in the mathematics seminar of the University of Hamburg.
Many problems treated in integral geometry had their roots in geometric
probability theory and it was main purpose to investigate whether prob-
abilistic ideas could be applied to get interesting results in the geometry
of convex bodies. Convexity is closely related to integral geometry. P. M.
Gruber and J. M. Wills([3], [4]) and L. A. Santalé [9] are good references
in this line.

Let K be a bounded convex set of the plane with interior points and
denote the area of K by F' and the perimeter of K by L. Assume that
n random lines intersect K. Then these lines determine a number v of
intersection points of pairs of lines that are interior to K. By definition we
have E(v) = —Ll,—,— meK#o vdGy AdGy A -+ - A dG,,. Then the mean number
of intersection points that are inside K is

_n(n—1)nF
= 73 .
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We can also find E(v?). Using the theory of Poisson line process([1], [2],
5], [6], [7], [8]) we get the mean area, the mean number of the sides, and
the mean perimeter of the regions into which the plane is partitioned by
the random lines([9]).

In this paper, we get the mean value of the number of intersections that
meet a fixed convex set K for n random strips chosen so as to meet K and
we get some geometric inequalities in way of studying integral geometry.

2. Preliminaries and Notations

Throughout this paper the underlying plane is the Euclidean plane. A
line on the plane may be determined by its distance p from the origin of
the plane and the angle ¢ of the normal of the line with the x axis. We
denote it by G(p,#). The function p(4) is the support function of the
envelope K of the lines G(p, ¢). We have the formula for the perimeter L
of K (See [9)):

& - [ " pde

The measure of a set of lines G{p, ¢) is defined by the integral, over the
set, of the differential form

(2) dG = dp A do,

called the density for sets of lines. Using (1) and (2) we have the formula
for the measure of the set of lines that meet a fixed bounded convex set
K:

(3) m(G;GNK #0)=1L,

where L is the perimeter of K. For the proof see [9]. Now we define a
strip B(p, ¢) as the closed part of the plane consisting of all points that
lie between two parallel lines at a distance § from the midparallel G(p, ¢).
We call the set B(p, ¢) a strip of breadth a. The position of B(p, ¢) can be
determined by the position of its midparallel G(p, ¢). Thus the density for
sets of strips of fixed breadth is dB = dp A d¢. For more informations see
[9]. Assume that K is a bounded convex set of perimeter L in the plane
and Ky is the parallel set of K in the distance §. If B(p,$) N K # 0, the
medparallel G(p, ¢) of B(p, ¢) intersects Kz. Conversely, if the midparallel
G(p,¢) of B(p,¢) intersects Ka, then B(p,¢) intersects K. And the
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perimeter Lg of the parallel set K ¢ of K in the distance £ is L + ma([9]).
Therefore using (3) the measure of the set of strips B of breadth  that
intersect a convex set K is

m(B;BﬂK#@)Z/ dB = L + ma.
BNK#D

Now we have the following lemma.

LEMMA 1. Let K be a plane convex set of area F and let B be a strip
of breadth a. Then

/ FBanB = 7raF,
BNK#0

where Fpny is the area of BN K.

PROOF. Let Gy, Gy be any lines. Consider the measure of the set of
pairs of lines G1, G and one strip B such that G;NG,NBNK # 0. The
measure of this set is the integral of the form dB A dG; A dG, over the set
G1NGaNBNK # 0. The first way, first fixing the lines G, G, and then
integrating over the strips B, gives

m(Gl,Gg,B;GlﬂGgﬂBﬂK#ﬂ)

- / / / dBdG,dG,
G1NK#0 Ggﬂ(KﬂGﬂ#O Bm(GlﬂGQOK);ﬁ@
= 7ra/ / ngdGl
G1NK#Q Gzﬂ(KﬂGl);ﬁﬂ

= 27ra/ o1dGh
GiNK#D

= 271%aF.



988 Yong Il Kim

And the second way, first fixing the strip B and then integrating over the
lines G; and Gs, gives

m(Gl,Gg,B;GlﬂGQHBﬂK#@}

= / / / dG,dG,dB
BNK#0 JGiN(BNK)#0 J GaN(G1NBNK)#)

= / / 20¢,nBnrdG1dB
BNK#0 J Gin(BNK)#8

= / 2rF BN KdB
BNK#D
= 27 / F BN KdB y
BNK#0
where 0¢,npnk is the length of the segment G; N B N K. This completes
the proof. 0

3. Main Results

In this section we investigate the measure of the set of lines and strips
that meet a fixed bounded convex set K and study some geometric in-
equalities and the geometry of the number of intersections that meet K
for n random strips that meet K.

THEOREM 1. Let K be a plane convex set of area F' and perimeter L
and let G be a line; and let By, By be strips of breadths ay, ay, respectively.
Then

m(By,By,G;Bi1N B NGNK #£0) = 7r2{2F(a1 +ag) + ajasL}.

PROOF. Let Fgnk denote the area of G N K and op,ngnk the length
of ByN GN K. Denoting u; the perimeter of By N K and Fg,nx the area
of Bl N K,

m(Bl,Bg,G;BlﬂBgﬂGﬂK#@)

= / / / dB,dGdB,
BiNK#0 J GN(B1NK)#0 J BoN(B1NGNK)#£E

= / / {2UGﬂBlﬂK + Waz}deBl
BiNK#B JGN(B1NK)#0
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= / {27 Fp,nx + maguy }dB,
BiNK#Q

= 271'/ FpinkdB) + may(2nF + ma,L).
BiNK#@

By Lemma 1, this completes the proof. a

REMARK 1. Theorem 1 says that if B; and B, are independent strips
that meet a fixed convex set K and the line G meets K then the probability

that BIN B, NGNK # 0 is
. 7r2{2F(a1 + (ZQ) + alazL}
~ L(L+7a)(L + maz)

COROLLARY 1. Let K be a plane convex set of area F and perimeter
L and let G be a line; and let B;, B, be strips of breadth a. Then

m(Bi, By, G;BiN ByNGNK # @) = n%a{4F + aL}.

PROOF. We have the result from Theorem 1 im mediately. a

THEOREM 2. Let K be a plane convex set of area F' and perimeter L.
If B is a strip of breadth a, then

(4) / w*dB < L{2rF + mal},
BNK#0

where u is the perimeter of BN K.

PROOF. Let G; and G5 be the lines in the plane and compute the
measure by first fixing the strip B and then integrating over the lines G4
and G5. Then we have

m(G1, Gy, B;GiNBNK #£0,G,NBNK # 0)
dG1dG»dB

/(:'1 NBNK#Q,G2NBNK#0Q

— / dB / dG, / dG,
BNK+#) G1NBNK#Q GaNBNK #£0

g / dB urdGl
BNK#0 G1NBNK#0

= / u%dB.
BNK#p
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On the other hand, if we compute this measure by first fixing the line G,
and the strip B and then integrating over the line G;, then we have

m(Gl,Gg,B;Gl NBNK % (D,GzﬂBﬂK 75 0)
dG,dG2dB

/01 NBNK#8,G2NBNK#0

_ / { / 4G, }dBdG,
G2NBNK#@ JG1NBNK#0

_ / { / wdB}dG,.
GaNK#0 J BN(G2NK)#D

Because u has the positive value and there is the strip B such that BNK #
@ and BN (K N Gy) = 0, we have

/ udB < / udB.
BN(G2NK)#0 BNK#0

Thus we have

G2NK#8 J BN(G2NK)#D

IA

/ { udB}dG,
G2NK#8 J BNK#0

L{2rF + malL}.

1

This completes the proof. a

Let K be a plane convex set with the origin in its interior. For the
direction 0 < 8 < 27 the distance Br(6) between two parallel lines per-
pendicular to the direction @ is called the breadth of K in the direction
6. Because the distance function Br(8) is continuous on [0, 27] Br(6) has
the minimal value on [0, 27]. From now on we assume that the breadth a;
of the strip B; s always less than the minimal value of Br(8).

THEOREM 3. Let K be a plane convex set of perimeter L and area F,
and let B;,1 < i < n, be a strip of breadth a;. Let v be the number of
intersections of B; and B; that meet K. Then the mean value E(v) of v
is

{2nF + n(an + ax)L + m2anax}
5 E .
( ) (U Z L—|-7mh)(L+7rak)

h<k
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PROOF. Let vp,  (h # k) denote the function of By, By such that

(6) _J L i ByNBNK#Y
YEEN 0, if BaNBiNK =0,

Then it is trivial that v = > Upk. Denote uy, the perimeter of B, N K,
h<k
1 <h <n. Then

/thch A dBk = / ch A dBk
BpyNB NK#(
= / { / dB;,}dB;
B,NK#0 Bhﬂ(BkﬂK)#@

= / {ur + may, }dBy
BiyNK3#)

= / ukdBy + map(L + way)
BenK#£0

= 2nF + warL + man L + 7wapas.
Thus
/udBlA~--AdBn

= /ZthdB]/\"'/\dBn

h<k
omitted omitted

) ~~ ~~
Z{ZﬂF+7r(ak+ah)L+7r ahak}/dBlA»--/\ dBrn A---A dBx A---AdB,
h<k

omitted omitted

e s, st
Z{27rF + m(ak + an)L + manac}(L + ma) - - (L +mar) - (L+mak) - - (L + 7wan).

h<k

Thus we have now easily the result from the definition of the mean value
JvdBiA---AdB,
E(v) = ‘

W)= T8 A A dB, 0

COROLLARY 2. Let K be a plane convex set of perimeter I and area
F. Then the mean value E(v) of the number v of intersections of the
strips B; and B; of breadth a, 1 < i < n, that meet K is

n(n — yn{F + aL + 1‘5‘3}
(L + ma)? .

E(v) =
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PROOF. Because in the proof of Theorem 3 a; = afor alli € {1,2,--- ,n}
and the summation ) has (}) terms we have the result O
h<k

From Theorem 3 we can get the well-known result:

COROLLARY 3. For n lines G;,i = 1,2,--- ,n, chosen at random so as
to meet a bounded convex set K of area F and perimeter L, the mean
number of intersection points that are inside K is

n(n — VH)mF
L? '
PROOF. In the equation (5) a) = ar = 0 we have

E(v) =

And since the summation hz:k has ('2') terms
<

E(y) = ™ _LS)LF. O

THEOREM 4. Let K be a plane convex set of perimeter L and area F,
and let B;, 1 < i < n, be a strip of breadth a;. Let v be the number of
intersections of B; and B; that meets K. Then

E(®) - E(v)
) -6 Z {27F + w(ai + a;)L + 7 aia; }{2nF + w(an + ax)L + n2anar}
TRk (L + mas)(L + ma; (L + wan)(L + max)

6 Z n2ajan(L + mai) + w(a; + an){2nF + ma: L} + (I2),
i (L + ma:i)(L + ma; )(L + wan) !

where (I); denotes the integral [p, . <0 uldB;.
PROOF. Let vy be the function in (6). Note that

/1/2dBll\"'/\dBn

= /{Z th2 + 2 z I/iijh}dBl A---ANdB,

h<k (£.9)#(kh)

= Z/uthdBlA---AdBn+2 3 /Vi;,-ukthl/\n-/\dBn.

h<k (1,5)#(k,h)
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First 3 f vne?dBy A - - - A dB,, is equal to
h<k

omitted omitted

o~ Py
Z/ {/ dBy AdBx}dBiA---A dBr A---A dBr A--- AdBn.
hek Y BiNK#B JBRrNByNK#0

And this equals

omitted omitted

9 Pt P N
Z{27rF +m(an + ax)L + 7 anar (L + a1} - - (L + man) - - (L + max) - - - (L + 7an).
h<k

Now
2 > vijukndB1 A -+ AdBy,
(4,5)7 ()
(8) =2 Y /u;juk;.dBl A--NdBa+2 Y /uijui,,dBl A---AdB,
ki, j#h,j#k i<j<h

i

6 Y /V,-jukthl/\---/\dBn—}—G > /u{juithlA---AdBn.

i<j<h<k i<j<h

And for ¢ < 7 < h, we have

/VijVithi A d.BJ A ch

_ / / dB;dB;dB;,
B;NB,NK+#B B,‘ﬂBjﬂK;‘l-'o

- / / / dB;dB;dB,
B:NB,NK#D INK#Q B.’ﬂBjﬂK#@

= / / (ui + ﬂaj)dB,-ch
BiNB,NK#@ J B;NK#@

_ / / (ui + 7a;)dBidBa
B;NK+#£0 {NBLNK#£Q

= / {u,- + waj}{ ch}dB,
B,-nK;élD B,’ﬂBhﬂKyéo

= / {wi + ma; H{u; + map}dB;
B;NK#H
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= / udei + 7r(aj + ah)/ u,dBl - 7r2ajah/ dB,
BiNK+#0 BiNK#0 BiNK#6

= 7r2ajah(L + ma;) + 7(a; + ap)(27F + ma; L) + / u;2dB;.
BiNK+#9

Now as a matter of convenience put

Aijh = /VijVithi A dBj A dBy,

and for ¢ < j < h < k, put
Aij :/ l/z'deidBj
B.ﬂB]-ﬂK;éﬂ

omitted omitted omitted omitted

~~ ~ ~~ ~~
Bijhkz/dBl/\---/\ dB; A---A dBj A---A dBrp A---A dBx A---AdBn.

and

Then
Z /V,'jl/.'thl A--- A dBn
i<j<h
omitted omitted omitted
—~~ ~~ —~
= Y A,-,«h/dBl/\n-/\ dB: A---A dBj A---A dBp A---AdBy
i<j<h
omitted omitted omitted
r—— | p——— p——
= Y (L+wa)--(L+ma:)- - (L+maz)- (L +man) - (L+ man)Ain.
i<j<h

And we have

Z /Viijthl N~ ANdB, = Z AijAthijhk-

i<j<h<k i<j<h<k

And
Aij =27 F + 7r(a,~ + a,)L -+ 7r2az-aj

and
omitted omitted omitted omitted

prm—— p— | pm— N, o
Bijnk = (L +ma1) - (L +mai)--- (L + maz)--- (L +man) - - (L + mak) -+ - (L + wan).
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Thus (8) is equal to

6 Z Aij Ak Bijnk

i<i<h<k

omitted omitted omitted
+6 Z (L+mar) - (L+mas) - (L+ma;)-- (L4 man) - (L + 7an)Aijn
i<i<h
= 6 Z {27F + 7(ai + a;)L + naia; }{2n F + w(an + ax)L + wanar}
i<j<h<k
omitted omitted omitted omitted
rm—— N | e

{(L+7ra1)---(L+7ra.-)---(L+7ra,»)~~-(L+7ra;.)---(L+7rak)-~~(L+7ran)}

omitted omitted omitted

r— e e, e e
+6 > (L+mar)---(L+mai)- (L +maz) - (L+man)--- (L + 7an)
i<j<h
{7*ajan(L + 7a:) + m(a; + an)(2nF + wa;L) +/ ui’dB;}.
B;NK#Q

Thus f v2dB; A - -- A dBj,, has the value

omitted omitted
Z{ZWF +7(an +ax)L + 7 anar}(L + wa1)- - (L + man) - - (L + mak) - - - (L + man)
h<k
+6 Z {2nF + m(a; + a;)L + n°aia; H{27F + n(an + ax)L + m2anai}
i<i<h<k
omitted omitted omitted omitted
T — N, e e, it e,
{(L+ma1)--- (L +was)--(L+ma;)--- (L +7wap)-- - (L +max) - (L + man)}
omitted omitted omitted
pm—— v g et o,
+6 Z (L+ma1)---(L+ma) - (L+ma;) - (L+man) - (L + wan)
i<j<h
{m*ajan(L + 7a;) + n(a; + an)(2rF + wa;L) + / wi2dB;).
BiNK#0

Using the definition of the mean value of E(12) and the inequality (4)
and Theorem 3 we have the result. O

COROLLARY 4. Let K be a plane convex set of perimeter L and area
F, and let B;, 1 < i < n, be a strip of breadth a. Let v be the number of
intersections of B; and B; that meet K. Then

E(®) - E(v)
—g(™ 7%{2F + 2aL + ma®}’ 6™ 7%a*(L + ma) + 2ma{27F + wal} + I,
T \4 (L +ma)t 3 (L + wa)? ’

where I, denotes the integral [, . LoWdB.
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PROOF. Because in Theorem 4 the summation 3"  has (%) terms
i<j<h<k

and the summation ) has (}) terms we have the results. [J
i<j<h
Corollary 4 gives us well-known fact:
COROLLARY 5. Let K be a bounded plane convex set of area F and
perimeter L. For n random lines chosen so as to meet K let v be the
number of intersection points inside K. Then the mean value of 12 is

‘ 2
2y _o [P\ F T2 F? n\ Jonk 07 4G
E(u)_QW(z)L2+Q4<4> i+ 24 3 e

where o denotes the length of KN G.

PROOF. Since a; = a; = a, = a5, = 0 in the inequality (7) and u = 20

and the summation 3  has () terms and the summation > has
i<j<h<k i<j<h

(g) terms we have the result. O

REMARK 2. From Theorem 3 and Theorem 4 we have also the result
for the variance 02 of the number v as follows:

-6 Z {27F + m(ai + a;)L + 72 aia; H2nF + w(an + ax)L + 72anar}

o) (L +ma:)(L + mwa;}(L + man)(L + wax)

i<j<h<k
+6 Z w2ajan(L + ma;) + m(a; + an){2rF + wa;L} + (I2),
(L +ma:)(L + 7raJ)(L + man)

i<j<h

+ Z {27F + w(an + ax)L + n2anar} Z {27F -+ w(an + ax)L + wlanar}
(L +man)(L + mak) (L + wan)(L + max) ’

h<k h<k

where (I3); denotes the integral [, Bink 20 Ui 2dB,.

Corollary 4 gives also the formula for the variance 62 of the number v
in the case a; = a for all i:

6 (n) a?{2F + 2aL + 'zr¢12}2 46 (n) 72a®(L + ma) + 2na{27F + waLl} + I
3

02(U) = 4 (L + 7ra)“ (L + 7ra)3

n(n — )r{F + oL + 722} - n(n — )n{F + oL + 222}
(L‘+“IT(1)2 (L+7ra)2 ’
where I, denotes the integral [, 0 u*dB.

Let K(t) be a class of plane convex sets of area F(t) and perimeter
L(t) depending on the parameter ¢. Assume that for any point p € E?
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there exists a value t, of ¢ such that p € K(t) for all ¢ > tp. This means
that K (t) expands over the whole plane E? as t — oo. Independently

of the shape of K(¢) lim %(% = 0. Let By be a strip of breadth a. Let

t—

Ko = BpN K(t) and denote by u the perimeter of K;. If n random strips
of breadth a intersect K (t), then the probability that exactly m of them

meet K is
P n\ fu+ma\" 1_u—{r7ra nem
m/\ L+ 7a L+ ma

Assume that K(t) expands to E? and that n = n(t) — oo is such a way

that lim 7 = 220, where A > 0. Then lim F,, = “3” =44 and the
—00 —00 i
mean value of m is
= . = (ud)™ _ A
E == 1 Pm — u
(m) ;m(tggo ) 2 e
2)° A
= e~ <u)\ + (uA)® + ——(u2‘) + (u3,) + - ) = uA.

Thus A equals the mean value of the number of strips meeting any convex
set of unit perimeter. And Theorem 3 says that tlim E(%) = m(=L-)? )2
00

utmTa
and Theorem 4 says that ltlim E(;Q—z) = WQ(ﬁ“nd)‘l/\“, Thus o%(%) =
E(I’f%—) — (BE(%))® — 0. So we have tlim % = t]im E(%) = W(ﬁum)%‘?'
—>00 —»00

This is the mean value of the number of intersections per unit area.
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