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CONFORMALLY FLAT COSYMPLECTIC MANIFOLDS
BYUNG HAk KIM AND IN-BAE KiMm

ABSTRACT. We proved that if a fibred Riemannian space M with
cosymplectic structure is conformally flat, then M is the locally prod-
uct manifold of locally Euclidean spaces, that is locally Euclidean.
Moreover, we investigated the fibred Riemannian space with cosym-
plectic structure when the Riemannian metric g on M is Einstein.

1. Introduction

From the Theorem 3.1 of D. E. Blair [3], it is well known that the
locally product of a Kdehler manifold with a circle or line admits cosym-
plectic structure. Moreover, D. Chinea, M. De Leon and J. C. Marreor
[4] constructed an example of compact cosymplectic manifolds which is
not a global product of a compact Kaehler manifold with the circle. On
the other hand, one of the present authors [6] studied various cosymplec-
tic structures on the fibred Riemannian space with invariant fibre. In
this paper, we study conformally flat cosymplectic manifold on the fibred
Riemannian space. It is also proved that conformally flat cosymplectic
manifold M is the locally product of Euclidean spaces, eventually M is
locally Euclidean.

2. Cosymplectic manifold

Let M be an m-dimensional C* - manifold and  a tensor field of
type (1,1) on M such that

(2.1) ¢ =-I+Ex7,
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where I is the identity transformation, §~ a vector field, and 7 a 1-form
on M satisfying

(2:2) $=iod=0 and #H(é) =1

Then M is said to have an almost cntact structure (¢~S, £, 7). It is

known that there is a positive definite Riemannian metric § on M such
that

(2.3) §eX , V) = —§(X, ¢Y)

(2.4) a(eX , Y ) = §(X, ¥) — #(X) (Y)
and

(2.5) g€ & =1,

where X and Y are vector fields on M. (é, é, 7j) is said to be normal
(2] if

where [é, d;] is the Nijenhuis torsion of ¢. The fundamental 2-form & is
defined by $(X,Y) = § (¢ X,Y ). An almost contact metric structure
((ﬁ, E , 7, @) is said to be cosymplectic if it is normal and both ® and
7 are closed. It can be shown [2] that the cosymplectic structure is
characterized by

(2.7) Vigd = 0 and Vzi = 0,

where V is the Riemannian connection of §.
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3. Fibred Riemannian space

Let (M,B,§,7) be a fibred Riemannian space, that is, M an m-
dimensional total space with projectable Riemannian metric §, B an
n-dimensional base space, and 7 : M — B a projection with maximal
rank n. The fibre passing through a point 5 € M is denoted by F(p) or
generally F, which is a p-dimensional submanifold of M, where p=m-
n . Throughout this paper, the range of indices are as follows ;

h,i,73,k,... : 1,2,....m
a,b,c,d,...:1,2,...,n
o,3,7,0,...:n+1,...,n+p=m.

Let o = (hy3*) and L = (Ly”) be the components of the second
fundamental tensor and normal connection of each fibre respectively.
The geometric objects {R, S, K } are the Riemannian curvature, Ricci
curvature and scalar curvature tensors of M respectively. {R, S, K} and
{R,§,K } are the corresponding objects of B and F. Then the structure
equations are given by (2, 5, 6, 8

(3.1) Riv® = Rap® — Lg®.Lay® + L°.LaS + 204 Ly,

Rdcﬁa =" Vchﬂad —* th[jac + 2**vﬂdea

3.2
( ) + LdeaLceﬁ - LceaLde,B - headhﬁec + hcachﬁed’

(3-3) Rdfyba = —*vdh—yab +** v—yLdba + Lde’)‘Leba + h’"}‘ed Gab,

(3.4) Rsyp% = Royp® + hspthy®, — hophy®,,

where we have put



1002 Byung Hak Kim and In-Bae Kim

(3.5) "Vahys® = 8ahyg® + Tgohys® — Qayhes® — Qaphye’,
(3.6) “*VsLep™ = 03Lep™ + T8 Lep® — LesLep® — Ly®5Lee,
(37) QCBQ = cﬁa - hﬁac:

and P.g® are local functions related to

Lc,C* = Pyg°EY,

where {E?,C*} are dual to the local frame {E;,Cs} and Lc, is a Lie
derivation with respect to Cg.

The Ricci curvature and scalar curvature are given by

(3.8) Seb = Scb — 2Loot Ly®, — hgach®®y,
1 * € * €
+ 5( Vche b+ vbhe 0)7
(3.9) 5’7[3 = 575 — hyg®hee +* Vehyg® + Laey L3,

(3.10) K =K +K —||Los®[|> = |lhys®l[ = hy? hsP" + 2°Vehee.

The following lemma is well known [5].

LEMMA 3.1. If the components L = (L) and h = (h,®) vanish
identically in a fibred Riemannian space, then the fibred space is loally
the Riemannian product of the base space and a fibre.
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4. Fibred Riemannian space with cosymplectic structure

In [6], we proved that if M is a cosymplectic manifold with (q;, £, 7, 3),
then B is a Kdhler manifold with complex structure (J, g), F is a cosym-
plectic manifold with (¢, £, 7, 3), L = 0 and each fibre is minimal in
M. Furthermore, the identity

(4.1) hy? o B5® = h,®

holds. Suppose that a fibred Riemannian space is conformally flat. Then
we get

~ 1 ~ ~ = h % R~
(4.2) Rkjih = m(&}:Sji — 5;51”' + Skhgji - jhgki)

T mo lf('m ~9) (ORGji — 67 3wi)-

By using (3.2) and (4.2), we obtain

(4.3) *Vehp®y = Vahg®, — he®3hg® + h® hst = 0.

Transvecting &% and J°? to (4.3) successively, we obtain |hgall]? =
0, that is A = 0. From this fact and Lemma, 3.1, we have

THEOREM 4.1. Ifthe fibred Riemannian space is a cosymplectic man-
ifold with flat conformal curvature tensor, then M is the locally product
manifold of a Kahler manifold and cosymplectic manifold.

From the equations (3.1), (3.2), (3.3) and (4.2), we obtain

1 X
(4.4) Rinp® = ‘(771__2‘)‘(635cb — 62 8ap + Sa”geb — Sc®gap)

K+K o a
T moDm=2) (629cb — 02 gav),
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1 K+K
=2 (658 — S, gdb)+( — 65 gap =

(4.5) 0,

(4.6)

@ 1 a Q a -  a = a o
Rsyp® = (m—_2—)(55 Sy — 055 + §+855% — GspS+°)

K+K

+ (m = 1)(m — 2) (85 Gvs — 'ygéﬁ)'

Contracting v and a, and transvecting g% successively in (4.5), we
get

(4.7) pm+n—1)K =n(n - 1)K.
The equation (4.4) and (4.7) induce

(4.8) Sep = —(m - l)gch,
and that
(4.9) {1+n(m-1)}K =0.

Since 1 + n(m — 1) # 0, we see that K = 0. So, the equations (4.7)
and (4.8) give K = 0 and Sy = 0. Henceforth, the curvature tensor
Rgcp® of the base space is identically zero, that is, locally Euclidean.
On the other hand, if we contract (4.6) with respect to 6 and «, then
we have S,3 = 0, so that the curvature tensor Rs,3% of the fibre is
identically zero. Hence by the theorem 4.1 and above results, we have

THEOREM 4.2. If the fibred Riemannian space M is a cosymplectic
manifold with flat conformal curvature tensor, then M is the locally
product manifold of locally Euclidean spaces, that is locally Euclidean.
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5. Critical Riemannian metric

In this section, we investigate the fibred Riemannian space with cosym-
plectic structure admits a critical Riemannian metric. Let G be the set
of all Riemannian metrics g on M which satisfy f m @Yy = 1, where dV
is the volume element measured by g. It is well known that 1,77¢g€G
is the critical point of the Riemannian functional

(5.1) Alg) = /M Kdv,

if and only if g is an Einstein metric. For this reason, if we assume that
the Riemannian metric § is an Einstein metric, then the second equation
of (2.7) and the second Bianchi’s identity give K = 0 and that S'ji =0.
Hence the equation (3.8)-(3.10) induce

(52) Scb = hﬂachﬂab7

(5.3) Syp =" Vohygt.

From these equations, we can easily see that the scalar curvature K
and K are respectively given by K = ||hgac||? and K = 0. Thus we have

PROPOSITION 5.1. Let M be a fibred Riemannian space with cosym-
plectic structure. If the Riemannian metric § on M is a critical Rie-
mannian metric of the function A, then the Ricci tensor on M vanish
and the Ricci tensors of the base space and each fibre are given by the
equations (5.2) and (5.3) respectively.

COROLLARY 5.2. Under the same assumptions of proposition 5.1, we
have

(1) g on B is a critical Riemannian metric of A if and only if

nh,@achﬂab - I ,hﬁae , |2gcb:

(2) g on F is a critical Riemannian metric of A if and only if § = 0.
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