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REMARKS ON VOLTERRA EQUATIONS
IN BANACH SPACES

Miur KM

ABSTRACT. Existence and Uniqueness for Volterra equations (VE)
with a weak regularity assumption on A, the relative closedness of A
are investigated by means of the Laplace transform theory. Also, (VE)
are studied by means of the method of convoluted solution operator
families.

0. Introduction

The objective of this paper is to study abstract Volterra integral equa-
tions

(VE) v(t) = A /0 v(t — s)du(s) + f(t), t>0

by means of the Laplace transform theory. Here we assume that A is a
linear operator on a Banach space X, u is a numerical function of local
bounded variation, and f : [0, 00) — X is assumed to be locally Bochner
integrable. In Section 2 we investigate the existence and uniqueness for
(VE) under the assumption that A is a relatively closed linear operator.
The properties of relatively closed operators are studied and applied to
the integrated Cauchy problems in B. Baumer and F. Neubrander ([4])-
The following definition is taken from [4].

DEFINITION. A linear operator A with domain D(A) and rauge in a
Banach space X is called relatively closed if there exists an auxiliary Ba-
nach space (X 4, || - | x,) which is continuously embedded in X (denoted
as X4 — X) such that
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(i) D(A) € X4 and
(ii) the graph of A is closed in X4 x X, i.e., if z,, € D(A) converges to
z in X4 and Az, converges to y in X, then 2 € D(A) and Az = y.
In this case we more specifically say that A is (X4 — X)-closed.

Obviously, closed operators are relatively closed and relatively closed op-
erators have continuity properties such as the commutativity of operators
and the integral for sufficiently regular functions. Particular classes of
operators which satisfy this rather weak regularity assumption are sums,
compositions, and limits of closed operators (see [4]). In this view the
results for (VE) in Section 2 extend those in [9].

As usual, we denote by v * du the Stieltjes convolution t fo v(t —

s)du(s) and by v * p the convolution : ¢ — fo v(t — s)pu(s) ds of suffi-
ciently regular functions v : [0,00) — X and p : [0, 00) — C.
f

DEFINITION. A function v is called a solution of (VE) i
(i) v : [0, oo) X is continuous,
(11) v*dp : [0,00) — X4 is locally Bochner integrable, and
(iii) fo (t—s d,u s) € D(A) for all £ > 0 and (VE) holds.

In order to be able to apply Laplace transform methods to (VE) we
will restrict our discussion to Laplace transformable forcing terms f,
exponentially bounded kernels y, and exponentially bounded solutions
v such that v * du is Lapalce transformable in X 4. In this case, the
Laplace transform converts (VE) into the characteristic equation

(CE) (I —dp(NAy\) = fIA)  forh>w

where du(A) == [ e Mdu(t), F(N) = [Ze M f(B)dt, y(A) = F(N),
and the number w depends on the growth of the functlons v, ¢, and
f. Thus, the Laplace transform method simplifies the problem (VE) by
eliminating the time variable from the characteristic equation (CE).

Whereas Section 2 is centered around the solvability of (VE) for a
given forcing term f, we investigate in Section 3 those pairs (A4, u) for
which (VE) has unique solutions for all sufficiently regular f. From
Section 3 on A is assumed to be a closed linear operator on X.

In recent years, the methods of integrated or convoluted semigroups
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with generators A have been applied successfully to the abstract Cauchy
problem u'(t) = Au(t), u(0) = z. The main idea there is to regularize
the equation by convoluting it with a sufficiently nice numerical function
k and to study the special Volterra equation

v(t) = A/tv(s) ds + k(t)a:
0

instead, where v = (u * k)’ (for references, see [3]. [5], or [6]). Extending
this method to equations of the form

v(t) = A/O v(t — s)du(s) + kit)z,

we will show that the notion of convoluted solution operator families with
generators (A, u) is suitable for studying generalized wellposedness for
the Volterra equation (VE). A convoluted solution operator family coin-
cides with an n-times integrated solution operator family for k(¢) = tn—",
for n € Ng := {0} UIN.

Section 4 contains Trotter-Kato type approximations for Volterra equa-
tions and finally in Section 5 the method of analytic convoluted solution
operator families which is a generalization of analytic integrated solution
operator families is introduced with a characterization of them.

Whereas the method of convoluted solution operator families assumes
the existence of (I — a/\L()\)A)_l as bounded operators on X for A € C
with Re A > w for some constant w, there are various cases especially in
applications to illposed problems where the assumption is not satisfied.
Thus, Section 2 studies (VE) without assuming the existence of (I —

c?;\t()\)A)“1 for any A € €. In particular, we characterize those forcing
terms f for which there exist solutions of (VE) for a given pair (A, u),

where the graph of A is not necessarily closed in X x X, but only in
X A X X.
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1. Preliminaries

In this section we introduce notation briefly and list some elementary
facts concerning integration for vector-valued functions and results from
the Laplace transform theory. Refer to (1], [3], [8], [9], or [10] for details.

Let X be a Banach space. BV([a,b]; X) denotes the space consist-
ing of X-valued functions f of bounded variation on [a,b]. We define
BVioe([0,00); X) := U BV([0,b]; X) and BV,([0, oc); X) := the space

b>0
of all f € BVi,c([0,00); X) such that f(0) = 0 and for some constants
M, € > 0, the variation varp 4 (f) of f on the interval [0, ] is less than or
equal to Me® for all ¢ > 0. As usual, L} ([0,00); X) denotes the space

loc

of locally Bochner integrable functions from [0,00) to X. C,, denotes the
set of all complex numbers A with Re A > w. We define the exponential
growth bound of a function f € L} ([0, 00); X) as

loc

w(f) :=inf{w € R | sup|le”“!f(t)|| < oo for some T > 0}.
t>T

Let one of f and g be an X-valued and the other a C-valued function.
If one of f and g is continuous and the other is of bounded semivariation

on [a,b], then the Riemann-Stieltjes integral fab f(s)dg(s) of f and ¢
exists and f *xdg € L'([a,b]; X). If fab f(s)dg(s) exists, then so does
fab 9(s)df(s) and the integration by parts formula

b b
(1.1) / £(s)dg(s) = F(b)g(b) — fla)g(a) — / o(s)df (s)

holds. It follows from (1.1) that if f and g are defined on [0,00) and if
[ * dg(t) exists for some f : [0,00) — X and g : [0,00) — €, then

t t
02) [ e o) = 10)att) - 1090)+ [ ot~ )ar(e)

0 ‘
for t > 0. The n-th normalized antiderivative of f € L},.([0,00); X) is
denoted by

Gl

(n-1)!

t fIn() :zl*l*---*l*f(t):/o f(s)ds.

n—times
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If f e LY([0,b];C) and g € Lip([0,b]; X), then u := f * (dg!!) is differ-
entiable a.e. on [0,b], and

w(t) = /0 £(t - 5)dg(s) + £(£)g(0)

for almost all ¢t € [0,b]. Moreover, u is continuously differentiable if
9(0) =0.

For f € L}, ([0,00); X), we define

loc

o~

T
abs(f) :=inf{ReX | f(A\) = Tlim / e f(t)dt exists}
—o00 Jo

called the abscissa of f and f is said to be Laplace transformable if
abs(f) < oco.

If Re A > max{abs(f), 0}, then f()\) and ?[T]()\) exist, and by integration
by parts,

——— —~

(1.3) AFII(N) = F(N).
For f € BVioc([0,0); X)|JC([0,00); X), we define
T
abs(df) := inf{Re A | df(}\) = Tlim e  Mdf(t) exists}
— 00 0

called the abscissa of df and f is said to be Laplace-Stieltjes trans-
formable if abs(df) < co. If f € BVjo([0,00); X)JC([0,00); X) is ex-
ponentially bounded and if f(0) = 0, then for a nonnegative number
w > w(f), it follows from (1.2) that

(1.4) df(N) = Af(N)

forall A e C,.

Let (X, ||-||) be a Banach space and (X1, ||-|[1) a continuously embedded
Banach space in X (i.e., X; — X). Then z,, — z in (Xj, || -||1) implies
that z, — z in (X,]| - ||). Let f € L} _([0,00); X1). We denote the

loc
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abscissa of f in X; by absx, (f) to specify the space X later in Section
2. The basic fact will be used in Theorem 2.1 that if abs x.(f) < oo,
then abs(f) < oo and [;° e *f(t)dt is a limit both in X and X, for
A€ C, with w > absy, (f).

The Laplace transform of a Stieltjes convolution has a multiplicative
property, which is essential for transforming the Volterra equation (VE)
to the characteristic equation (CE).

PROPOSITION 1.1. Suppose that f € C([0,00); X) with w(f) < oo
and that g € BV,([0,00); C) for some € > 0. Let w be a number such
that w > max{w(f), €}. Then abs(f * dg) < w and for A € T,

Frdg(N) = F(Ndg(n).

The details of the Laplace transform results which follow can be found
in [1], [3], or [10]. A fundamental fact from Functional Analysis follows
at the end of this section.

THEOREM 1.2. (Uniqueness Theorem) Let f € L}, .([0,00); X) with

-

abs(f) < co. If there exists an w > abs(f) such that f = 0 on (w, 00),
then f(t) = 0 for almost all t > 0.

The space Lip,,([0, 00); X) for w € IR is defined as the space consisting
of those functions F' : [0,00) — X with F(0) = 0 and for which | F |l Lip,,
defined as

t+h
inf{M | |[F(t+h) - F(t)|| < M/t e“"dr for t, h > 0}

is finite. It is clear that if w > 0 and F' € Lip, ([0, c0); X), then w(F) <
w. If f € L, ([0,00); X) with w(f) < oo, then for ary number w > w(f),
A € Lip, ([0, 00); X).

The following inversion theorem of the Laplace-Stieltjes transform will
be crucial in characterizing the solutions of Volterra equations.
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THEOREM 1.3. (Phragmén-Doetsch Inversion Theorem). Let F ¢
Lep.,([0,00); X) and let r := dF on (w, 00). Then

£ = > S cmining)) < 2,

=1

foral]nEINWithn>wandallt20.

The Widder space C((w,o0); X) is defined as the space consisting
of all those functions r € C*°((w, 00); X) for which

1
Irlww:=sup ||(A —w)k“—,?”(k)(/\)ll < 0.
kENo, A>w k!

THEOREM 1.4. (Widder’s Theorem). The Laplace-Stieltjes trans-

form is an isometric isomorphism from Lip, ([0, 00); X) onto C((w, o0);
X).

The following theorem is due to B. Hennig and F. Neubrander (7).

THEOREM 1.5. Let F, € Lip,([0,00); X) for every n € IN for which
there exists a constant M > 0 such that | FallLip, < M for alln € IN.
Then the following are equivalent.

(1) There exist constants a > w and b > 0 such that nango d/FTn(/\k)
exists for all k € INg where )\, := a + kb.

(ii) There exists an F € Lip,([0,00); X) such that ||cﬁ'||w,w <M
and {@()}n converges uniformly to Jf’() on compact subsets of
(w, 00).

(iii) nli_)r%o F.(t) exists for every t > 0.

(iv) There exists an F € Lip,([0,00); X) with |Fl|lLip, < M such that
{Fn(-)}n converges uniformly to F(-) on compact subsets of [0, 00).

Let w e R and 0 < 8 < 7. By ¥, we denote the open sector
{z€C | |arg(z — w)| < 6}.
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THEOREM 1.6. Let 0 < 6y < %, w € R, and let ¢ be a function from
(w, o0) to X. Then the following are equivalent.

(i) There exists an analytic function f : $o4, -» X such that ¢ = f
on (w, 00), and sup |le”“*f(2)|| < oo for every 6 € (0, o).
zE€Xp,0
(ii) The function q admits an analytic extension § : Yuw,00+3 — X for
which  sup ||(A —w)g(A)| < oo for every 6 € (0, 6y).

€2 0+%

Moreover, if (i) holds, then for every 6 € (0, 6), there exists a constant
Cy > 0 such that

1B (@) < Coe e (2] + 1)*

for all z € £p 9.

THEOREM 1.7. (Uniform Exponential Boundedness Theorem).
Let F' : [0,00) — L(X;Y') be a function such that F(-)z is exponentially
bounded for each x € X. Then there exist constants M > 0 and w € R
such that ||F(t)|| < Me“® for all t > 0.

2. Existence and Uniqueness of solutions of (VE)

Let X be a Banach space. This section contains a solution character-
ization and uniqueness for (VE).The methods used in their proofs are
modified from [1], [3], [4], or [9].

THEOREM 2.1. Let A be an (X4 < X)-closed linear operator, u €
BV ([0,00);C) for some € > 0, and f a function in L} ([0,00); X) with
abs(f) < oo. Let v € C([0,00);X) such that w(v) < oo, v*du €
L},.([0,00); X 4) with absx, (v * du) < oo, and v * du(t) € D(A) for

every t > 0. Let w > max{e, abs(f), w(v), absx,(v*du)}. Then the
following are equivalent.
(1) v is a solution of (VE).
(i) du(A)B(A) € D(A) and (I — dp(N)A)B(N) = F(X) for all A € C,.
(iii) du(l)o(l) € D(A) and (I — du()A)o(l) = () for all | € N with
[>w.
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PROOF. Suppose that (i) holds. Let A € C,. Since w(v) < w and

since absx , (v * du) < w, it follows from the (X4 — X )-closedness of A
and Proposition 1.1 that

B(A) :/Ooe““v(t)dt
0
= /Oooe_’\t(A/otv(t— s)du(s) + f(t))dt
= [Tevaf o(t — s)dp(s)dt + | e s
= [T [Cute- st [T e

= Avxdp(}) + F(N)
= Adp(NB(A) + F(N).

Thus, (i) implies (ii). Clearly, (ii) implies (iii). We show the impli-
cation (ili) => (i) by using the Phragmén inversion formula(Theorem

o0 i+l .
1.3) F(t) = li_)m 3 (—1])'+ e"™r(nj) for t > 0 and n > w where
n OOJ=1 *

F € Lip,([0,00); X) and r(-) = c?f*‘() on (w,c0). Suppose that (iii)
holds. Let o' > w. It follows from w(vll), w(f) < o’ that vl?
2 e Lip,([0,00); X) and from wx , ((v*dp)) <o’ that (vxdp)? e
Lip.([0,00); X 4). Hence it follows from (iii) and the relations (1.3) and
(1.4) that

dwl(1) — dFRI(1) = A(d(w * dp)®)" (1)

for every I € IN with I > w’ (we denote the Laplace-Stieltjes tansform
Jo” e~ d(v*du)(t) of the more or less long expression (v*du)?! at { by
(d(v * dp) ) (1) for accuracy because ™ does not spread enough in tex).
Then it follows from the (X4 < X)-closedness of A and the Phragmén
inversion formula that

() ~ fB@) = A dw)@(),  t>o0.
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It follows from the twice differentiability of (v * du)!?! in X4 and the
(X4 — X)-closedness of A that

v(t) - f(t) = Alv*dp)(t), t=0.
Thus, (iii) implies (i). O

The linearity of A and Theorem 2.1 imply that the exponentially
bounded solutions of the Volterra equation (VE) are unique if and only
if for any w > ¢, the equation

(I —dpN AN =0  (A>w)

has no nonzero solution y which has a Laplace transform representation
y(A) = ©(A) for some v € C([0,00); X) such that v x du(t) € D(A) for
every t > 0 and v*dy : [0,00) — X4 is Laplace transformable. Another
uniqueness theorem is given in terms of spectral properties of A and .
op(A) denotes the point spectrum of an operator A.

THEOREM 2.2. Let A be an (X4 <« X)-closed linear operator and
p € BV ([0,00);C) for some € > 0. Suppose that there exists a se-
quence {A;}i in C, such that Re \y — o0 as k -— oo, and for which

E/\L(Ak)_l ¢ op,(A) for all k € IN. Then the equation (VE) has at most
one exponentially bounded solution v for which absx, (v * du) < co.

PROOF. Since A is linear, it suffices to show that v = 0 is the only
exponentially bounded solution with absx , (v*du) < oo to the equation

(2.1) v(t) = A/(; v(t — s)du(s), t>0.

Let v € C([0,00); X) be a solution of (2.1) with w(v) < co. Let w >
max{e, w(v), absx,(v * du)}. Since Re Ay — o0, it follows from
Theorem 2.1 that there exists a K € IN such that

B(Ak) — Adp(Ax)d(Ak) = 0

for all k > K. Since du(M)™! € a,(A), 5(Ax) = 0 for all k > K. Fix
ak > K. We claim that ¥ = 0 on C_,. Assume not. Let m ¢ IN
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be the order of the zero A of the analytic function ¥ on €,. Since
d/w(/\k) = v* d,u(/\k) € X4, it follows from the (X4 — X)- closedness
and linearity of A that (d,uv)(m)()\k) € D(A) as a limit in X4 and

2™ (k) = A(dp D)™ ()

—AZ( ) )\k)A('n P (Ax)

= du(re) AT ().

Since 9(™(\g) # 0, it follows that d,u(/\k) ! € g,(A), which is a con-
tradiction. Thus, ¥ = 0 on C,. It follows from Theorem 1.2 and the
continuity of v that v = 0 on |0, oo). ]

3. Convoluted solution operator families and the wellposed-
ness of (VE)

This section studies convoluted solution operator families for (VE)
where A is a closed linear operator on a Banach space X. The method
of convoluted solution operator families is a generalization of integrated
solution operator families for (VE) and integrated or convoluted semi-
groups for abstract Cauchy problems. It is suitable for studying the
wellposedness of (VE). Most properties of integrated solution operator
families in [9] are hereditary. The proofs of some properties of con-
voluted solution operator families are omitted which can be obtained
almost directly from the corresponding results of integrated solution op-
erator families in [9].

DEFINITION 3.1. Let A be a closed linear operator with domain D(A)
and range in a Banach space X and p € BV,([0, 00); €) for some € > 0.
Let k € L}, .([0,00); C) be Laplace transformable. Let M > 0 and w >
max{e, abs(k)} be some constants. Suppose that (I— dAu(/\)A)* € L(X)
for all A > w. A strongly continuous mapping S : [0, c0) — L(X) is said
to be a k-convoluted solution operator family (k-c.s.o.f. for short) of
exponential type (M;w) with generator (A, u) if the following hold.
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1) IS < Me*t for all t > 0.

(ii) R(A)(I — dp(N)A) "z = §(\)z = [° e MS(t)zdt for every A > w
and every = € X.

REMARK. Analogously to integrated solution operator families (see
[9]),if S'i is a k-c.s.0.f. of exponential type (M;w) with generator (A, 1),
then (I — du(M\)A)~! exist in L(X) and k(\)(I — dp(\)A) 1z = §()\)z
holds for all z € X and A € C,. It follows from the uniqueness of
Laplace transform (Theorem 1.2) that for each Laplace transformable k
in L}, .([0,00); C), the pair (A, 1) generates at most one k-c.s.o.f..

LEMMA 3.2. If S is a k-c.s.0.f. with generator (A, p), then the fol-
lowing hold.
(i) S(t)x € D(A) and AS(t)z = S(t)Ax for every t > 0 and every
x € D(A).
(ii) S satisfies the equation

(3.1) S(t)z = /t S(t — s)Azdu(s) + k(t)x  (t >0, z € D(A)).
0
(iii) fy S(t — s)zdu(s) € D(A) and
(3.2) S(t)z= A/t S(t — s)zdu(s) + k(t)z (>0, z € X).
0

Equation (3.2) says that if S is a k-c.s.o.f. with generator (A, ), then
S(-)x is an exponentially bounded solution with values in X of the
Volterra equation

(VE; k, z) v(t) = A/tv(t — 8)du(s) + k(t)z, t>0
0

for all z € X. The necessary conditions (i) and (ii) in Lemma 3.2 are
sufficient for an exponentially bounded, strongly continuous operator
family S = {S(t)}+>0 in L(X) to be a k-c.s.0.f. with generator (A, v).
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PROPOSITION 3.3. Let A be a closed linear operator on X and let U e
BV([0,00);C) for some e > 0. Let k € L}, ([0,00); ©) be Laplace trans-
formable. Let S = {S(t)}:>0 be a strongly continuous operator family
in L(X) for which there exist constants M > 0 and w > max{e, abs(k)}
such that ||S(t)|| < Me“* for all t > 0. Then S is a k-c.s.o.f. with

generator (A, ) if and only if S satisfies the following statements.
(i) S(t)x € D(A) and AS(t)x = S(t)Ax for every t > 0 and € D(A).
(ii)) S(t)z = Afot S(t — s)x du(s) + k(t)z for every t >0 and z € X.

Analogously to integrated solution operator families, a Hille-Yosida
type characterization of convoluted solution operator families with gen-
erator (A, u) is possible if additionally, A is densely defined and W is
absolutely continuous. The following is modified from and improves
Theorem 3.1.10 in [9] and Theorem 2.2 in [2].

THEOREM 3.4. Let k € L} ([0,00);C) be Laplace transformable.
Suppose that A is a densely defined closed linear operator on X and
that ;1 is an absolutely continuous function in BV, ([0, 00); C) for some
€ > 0. Let M > 0 and w > max{e, abs(k)} be some constants. Then
the following are equivalent.
(i) The pair (A, 1) generates a k-c.s.0.f. of exponential type (M;w).
(i) For every A > w, (I — g;\t(/\)A)“1 exists in L(X) and the function
H : (w,00) — L(X) defined by H(\) = k(A)(I—dp(\)A)~! belongs
to C*°((w,00); L(X)) and satisfies the estimates

HG(X) M
i IS oy

(3.3) | for all j € Ng and A > w.

PROOF. Suppose that S is the k-c.s.o.f. of exponential type (M;w)
with generator (A,u). Let A > w and = € X. From Definition 3.1,

H(Nz = k) I — dp(N)A) 'z = §(\)z = [ / ” e“’\tdS[l](t)}:c
0

for all z € X. Since S!l € Lip, ([0, co); L(X)), it follows from Widder’s
Theorem (Theorem 1.4) that H € C3((w,0); L(X)). Thus, (i) implies
(ii). Suppose that (ii) holds. Then H € Cw ((w,0); L(X)). Hence,
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by Widder’s Theorem, there exists T € Lip,([0,00); L(X)) such that
dl' = H on (w,00) and ||T||Lip, = ||H||lww < M. It follows from the
relations (1.3) and (1.4) that

T(A) = BN — da(NA)~t  for A> w.
Hence, T is the kl!l-c.s.0.f. with generator (A, x). Thus, by Lemma 3.2,

T(t)r = /(: T(t — s)Axdu(s) + kM (t)z

for all t > 0 and z € D(A). Let g(t) := T(t)Az for t > 0. Then

T(t)x = /O t gt — )i/ (s)ds + kM (t)z = /0 t 1 (t — s)dgttl(s) + k1 (t)z.

Hence, t — T'(t)x is continuously differentiable (see Section 1) and

dT'(t)z
dt

= / p(t — s)dg(s) + k(t)x = / Y (t —s)dT(s)Az + k(t)z
0 0

for all x € D(A). Next, we show that T'(-)z is differentiable for all
x € X. Lett > 0. Since T € Lip,([0,00); L(X)), the difference quotients
D,, = T.Q_tb_%:i’_"_(_t). are uniformly bounded for h such that 0 < |h| < 1
and t + h > 0. Since %13% Dy exists for x € D(A), we obtain from

Banach-Steinhaus Theorem that there exist operators S(¢t) € L(X) such
HEL;:_]@ for all z € X. Notice that S

is of exponential type (M;w). To show that S is strongly continuous on
[0,00), let z € X, € >0, and z € D(A) with ||z — z|| <e. It follows from
1S(t)z—S(to)l| < [|S@)| [l —z]|+]|S(£)2—S (ko) zl|+ [ S(t0)|| llz— =], the
continuity of ¢t — S(t)z for z € D(A), and the exponential boundedness
of S that t — S(¢)z is continuous on [0,00). Thus, the operator family
T is strongly differentiable on [0,00) and qu%’)—x— = S(t)z for all t > 0
and z € X. Therefore,

that S(t)z = lim Dpz = lim
h—0 h—0

o0

EI — dp(M)A) 1z = A /

o0
e—’\tT(t)xdt:/ e MS(t)zdt
0

0
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for all z € X and A > w. This shows that S is a k-c.s.0.f. with generator
(A, ). O

If (A, ) generates a k-c.s.o.f. with k(t) = %1, ie, if (A, 1) is an n-

times integrated solution operator family, then unique solutions of (VE)
are found for all sufficiently regular f. See Theorem 3.1.11, [9] for the
following.

THEOREM 3.5. Suppose that (A, i) generates an n-times integrated
solution operator family S for some n € INy. Let f be a Laplace trans-
formable function in C([0,00); X). Define w(t) :=: fot S(t — s)f(s)ds for
every t > 0. Then the following hold.

(1) If w e C™**1([0,00); X), then w1 js a solution of (VE).
(i) Ifv € C([0,00); X) is a solution of (VE), then w € C™t1([0,00); X)
and v = w1,

Now, we discuss the wellposedness of (VE) with respect to convoluted
solution operator families. Let k € C([0,00); €') such that & Z0and k is
Laplace transformable. As mentioned after Lemma 3.2, if S is a k-c.s.0.f.
with generator (4, 1), then S(-)z is an exponentially bounded solution
of the Volterra equation (VE ;k,z) for all z € X. In fact, the following
Proposition 3.6 implies that S(-)z is the unique expontially bounded
solution to the equation (VE ;k,x) for every z € X. By modifying
Proposition 2.1 in H. Oka [11], we obtain the following.

PROPOSITION 3.6. Let A be an (X4 — X)-closed linear operator
and p € BV([0,00);C) for some ¢ > 0. Suppose that there exists a
Laplace transformable k € C([0,00);C) such that k # 0 and for which
there exists a k-c.s.o.f. with generator (A, u). Then the equation (VE)
has at most one solution.

PROOF. Let k be a nontrivial Laplace transformable function in
Lj,.([0,00); C) for which there exists a k-c.s.0.f. S with generator (A, ).

loc

Let v € C([0,00); X) be a solution to the equation v(t) = Afot v(t —
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s)du(s). Then

Sxv(t) =8 x A(v x du)(t)

/ /t 1v(t—r—sd,u(s)dr

= / A S('r)v(t —r — s)du(s)dr
o Jo

_ /0 ‘A /0 TSt - syo(r)du(s)dr

_ /0 [S(t — r) — k(t — r)]o(r)dr
= Sxv(t) — k *v(t)

for all £ > 0. Thus, k * v = 0. Therefore, v = 0. O

We will show that if £ € C([0,00); C) with k& # 0, then (VE ; k, z) has
a unique, exponentially bounded solution for every z € X if and only
if (A, p) is a generator of a k-c.s.o.f.. For this the following lemma is
crucial.

LEMMA 3.7. The following statements are equivalent.

(i) The equation (VE ;k,x) has a unique, exponentially bounded so-
lution for all z € X.

(ii) The equation (VE ; k,x) has a unique, exponentially bounded solu-
tion v(-) = v(-,x) for every x € X and there exist constants M > 0
and w > max{e, abs(k)} such that ||v(t)|| < Me*t||z| forallz € X
andt > 0.

PROOF. Clearly, (ii) implies (i). Suppose that (i) holds. For every

z € X, let v(-,z) be the unique exponentially bounded solution of the

equation (VE ; k,z). Considering C([0, 00); X) as the Fréchet space with

the seminorms p,.(f) = sup lf®ll, T > 0, define a map ¢ : X —
0<

C([0,00); X) by z — v(-, :1:) Then ¢ is linear since v(-,z) is a unique
solution of (VE ;k,z) for each z € X. We show that ¢ is continuous.
Since ¢ is defined on X, it suffices to show that ¢ is closed. Suppose
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that a sequence {z,,},, converges to z in X and {v(-,2,,)}m converges
to u in C([0,00); X). Since v(-,zm) * du(t) € D(A) and the sequence
{f(;' v(t — $,Zm)du(s)}m converges to fot u(t — sidu(s) in X for every
t > 0, we obtain from the closedness of A that (u * du)(t) € D(A) and

= A/O u(t — s)du(s) + k(t)z

for every t > 0 and z € X. Hence ¢ is closed. For every t > 0,
define S(t) : z — wv(t,z) on X. Clearly, the operators S(t) are linear.
Since S(t)z = v(t,z) = ¢(z)(t), we obtain that S(¢) € L(X). Since
t — S(t)r = v(t,z) is exponentially bounded for each z € X, it follows
from the Uniform Exponential Boundedness Theorem (Theorem 1.7)
that there exist constants M > 0 and w > max{e, abs(k)} such that
I1St)z|| = ||v(t, z)|| < Me*t||z|| for all z € X and t > 0. O

THEOREM 3.8. Let A be a closed linear operator on X and let u €
BV([0,00); C) for some € > 0. Let k € C([0,0c); C) such that k % 0
and k is Laplace transformable. Then the following are equivalent.

(i) The equation (VE ;k,z) has unique, exponentially bounded solu-

tions for all x € X.
(ii) (A, u) generates a k-c.s.o.f..

PROOF. The implication (ii) == (i) holds by Proposition 3.6. Sup-
pose that (i) holds. It follows from the proof of Lemma 3.7 that there
exists a strongly continuous operator family {S(t)};>0 C L(X) for which
there exist constants M > 0, w > 0 such that ||S(¢)|| < Me*t forallt > 0
and that

S(t)x = A/t S(t — s)xdp(s) + k(t)z, t>0
0

and for every x € X. Hence S(-)x is an exponentially bounded solution
of (VE ;k,z) for every £ € X. Let z € D(A) and t > 0. Define

v(t) : fo (t — s)Azdu(s) + k(t)z. Then v(t) € D(A) and

Av(t) = A/()t S(t — s)Azxdu(s) + k(t) Az

= S(t)Az — k(t)Az + k(t)Ax
= S(t)Az.
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Thus,

14

o(t) = /0 Av(t — s)du(s) + k(t)z = A / ot - s)du(s) + k(t)z.

0

Then, by the uniqueness of the solutions of (VE ;k,z), v(t) = S(¢t)z.
Thus, AS(t)z = S(t)Az for all t > 0 and = € D(A). Therefore, by
Proposition 3.3, S is a k-c.s.o0.f. with generator (A4, p). a

4. Trotter-Kato type approximations of convoluted solution
operator families

Let X be a Banach space and let M > 0 and w > 0 be some constants.
A sequence {5y}, of functions S, : [0,00) — L(X) is said to be (M;w)-
stable (or simply stable) if ||S, ()| < Me“* for all n € IN and ¢t >
0. Trotter-Kato type approximations of integrated solution operator
families in [9] extend to convoluted solution operator families.

THEOREM 4.1. Let A, A, be closed linear operators on X and let i,
tin € BV([0,00); C) for some e > 0 foralln € IN. Let k € L} ([0, 00); )
be Laplace transformable. Let M > 0 and w > max{e, abs(k)} be some
constants. Let {S,}ncn be an (M;w)-stable sequence of k-convoluted

solution operator families S,, with generators (A,,, iu,). Suppose that

(I — du(N)A)~! exists in L(X) and lim (1 - dpn (M)A te = (I -
@(A)A)”lx for every A > w and z € X. Then there exists a k!!-c.s.o0.f.
T € Lip,([0,00); L(X)) with generator (A, p) such that | T||Lip, < M.
Moreover, for every z € X, {S,[zl](t)x}n converges uniformly to T'(t)z on
compact subsets of [0,00). If in addition, A is densely defined and 7
is absolutely continuous, then there exists a k-c.s.o.f. S of exponential
type (M;w) with generator (A, u). In fact, S(t)r := %fﬁ forallt >0
andz € X.

PROOF. Define T, (t)z := f(; Sn(s)xds for every n € IN, ¢t > 0,
and z € X. Then the (M;w)-stability of {S,}, implies that T}, €
Lip, ([0, 00); L(X)) with | T, 1ip, < M for alln € IN. It follows from the
hypothesis nllrgo(l — dﬂ(A)An)_lx =([—- c/l;L(/\)A)*lx that d/fn(,\)x =
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3’;()\):3 = E()\)(I - d/u\n(/\)An)_lx converges to /151/\)(] - d/\u(A)A)“lm for
every A > w and ¢ € X. Since |T,(-)z| Lip, < M||z| for all n € IN
and z € X, it follows from Theorem 1.5 that for each z € X, there
exists T € Lip,([0,00); X) with ||T;||Lip, < M|z| such that the se-
quence {T,(-)x}, converges uniformly to T,(-) on compact subsets of
0,00). Define T'(t)x := T,(t) for every t > 0 and x € X. Then, by the
uniqueness of a limit, T'(t) : X — X is linear for every ¢ > 0. Moreover,
T € Lipw([O,oo);L(X)) with [|T||1:p, < M. It follows from Theorem

1.5 that {dT,(A)z}, converges uniformly to ﬁ“()\):c on compact subsets
of (w,00). By the uniqueness of limits,

??‘)

B - Za)A) e = B0 (1 - Za).4) 0 = £ = T

for every A > w and z € X. Thus, T is a kY-c.s.0.f. with generator
(A, p). Assuming that A is densely defined and u is absolutely contin-
uous, it follows from the second half of the procf of Theorem 3.4 that
dT(t)m exists for all t > 0 and z € X and there exists an operator fam-
1ly S = {S(t)}+>0 in L(X) such that S(t)z = ”T(t)x:c and which is a
k-c.s.o.f. with generator (A, p). O

The previous theorem says that if {S,}, is a stable sequence of k-
convoluted solution operator families S,, with generators (A, y, ) where
A, are closed linear operators on X and p, € BV, ([0,00); C) for all
n € IN, and if A is a densely defined closed linear operator on X and
p € BV ([0,00); C) is absolutely continuous, then the strong convergence
of the sequence {(I — d,un( JAR) "1}, to (I — du()\)A) on a right half
line of IR implies the existence of a k—c.s.o.f. S with generator (A, u)

and the uniform convergence of the sequence {S,L”(-).r}n to S()z on
compact subsets of [0, 00). For every z € X, the sequence {S, ()}, con-
verges uniformly to S(-)z on compact subsets of [0, o0) under additional
assumptions on k, and (4, u) and (A,, ,,) for n = IN.

THEOREM 4.2. Let A, A, be densely defined closed linear operators
on X and let p1, pi, be both absolutely continuous and in BV, ([0, co); ')
for some € > 0 for all n € IN. Let k € L} _([0,00);C) be a Laplace
transformable function which is bounded on compact subsets of [0, 00).
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Let M > 0 and w > max{¢, abs(k)} be some constants. Let {S,}.
be an (M;w)-stable sequence of k-convoluted solution operator fami-

lies S,, with generators (A, u,) for n € IN. Suppose that g/.\l, % 0 on
(w,00) and that (I — @()\)A)_l exists in L(X) for every A > w and
lim (I - dE(A)An)—lx = (I—c/l,L\L()\)A)‘lm for every A > w and z € X.
Add1t1ona]1y, suppose firstly that D(A) N ﬂ D(A,,) contains a dense

subset D of X, secondly that ., € sz“,([O oo) @) with ||u;,||Lip, < L
for all n € IN, and finally that {u/,(t)}. converges uniformly to p'(t) on
compact subsets of [0,00). Then, there exists a k-c.s.o.f. S of exponen-
tial type (M;w) with generator (A, u) for which for every x € X, the
sequence {S,(-)x}, converges uniformly to S(-)x on compact subsets of

[0, 00).

Proor. By Theorem 4.1, there exists a k-c.s.0.f. S of exponen-
tial type (M;w) with generator (A, u). For the uniform convergence
of {Sn(t)x}. to S(t)x, we first show that for every y € D, the sequence
{Sn(t)y}n converges uniformly to S(t)y on compact subsets of [0, 00).
Let y € D. Since S and §,, are k-convoluted solution operator families
with generators (A, 1) and (Ay, in), respectively, by Lemma 3.2,

(4.1) Sp(t)y = /0 Sn(t — s)Anydun(s) + k(t)y
and
(4.2) S(t)y = /0 S(t — s)Aydu(s) + k(t)y

for every t > 0. Define h(}) := (I - a;\l,(/\)/—l)_l and h,()\) = (I —
dpin(A)Ap) ! for every A > w and n € IN. Then from the hypothesis,
lim h,(X)z = h(A)x for every A > w and z € X. Let A\p > w such that
n-—o0

C/l;b(/\()) # 0 and let z:= (I — @(AO)A)y. Then y == h(Ag)z and

I Sn(t)y — S(t)yll
< Sn(8)(A(A0)2z = hn(R0)2)|| + [[Sn(B) hn(Ao)z — S(t)R(Ao)z]-
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Since Sy (t) are uniformly bounded on compact subsets of [0, c0), it suf-
fices to estimate the convergence of the second term in this expres-
sion. It follows easily from the conditions y], € Lip,([0,00);C) and
”l‘l’n“LlPu < L for all n € IN that p, € Lip,([0,00);C) and ||| Lip, <

L for all n € IN. The condition that tn(t) converges uniformly to
u’ (t) on compact subsets of [0,00) implies that nlglgo pn(t) = u(t) for

all ¢ > 0. Thus, by Theorem 1.5, nlinéo c?;;()\o) = 8;()\0). Since
nan;o d/u:()\o) = @(/\g) and c/i;\z()\o) # 0, to estimate the convergence
of {||Sn(t)hn(Xo)z — S(t)h(Ao)z||}n is equivalent to estimate the conver-
gence of {[[d4(30)dhin (X0) (Sn(t)hn(R0)z = S(#)h(%0)2) [} By (4.1) and
(4.2),

4120} dpzn(30) (Sn(B)ha(Ro)z = S(B)A0)2) |

= (30} (o) / Sult — 5) Anhn(Mo) it (5)ds
(4.3) 0 t
. /0 St — s)Ah(/\g)z,u’(s)ds) [

+ 14 (20)dtin(X0)k(t) (o (Xo) 2 — h(Xo)2)]-

Since the second term in (4.3) converges uniformly to 0 on compact
subsets of [0, 00), it suffices to estimate the convergence of the first term
n (4.3).

1850%0)dgim (30) / Sult = 5) Anhn(Mo)zstl(s)ds
—/ S(t— s)Ah(Ao)zu'(s)ds) I
0
= lda(r0) / Sn(t = 8)(hn(Mo) — Izl (s)ds
0

— G (M) /0 S(t — 5)(h(Mo) — I)z (s)ds]
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< 1) ~ & (o)) | Syt = )(ha00) — Dl (5)ds]

(4.4 O | [ 26 5)(ha(030) - D ()
- [ 5= 5)000) = D )asl

Since fot Sn(t=5)(hn(Ao)—TI)2zpu,,(s)ds are uniformly bounded on compact
subsets of [0, o) and since le g;—;,(/\o) = c/i/\;()\o), it suffices to estimate

the convergence of the term || fot Sn(t—35)(hn(Xo) —I)2ul (s)ds — fot S(t—
8)(h(Xo) — I)zp/(s)ds]| in (4.4).

1/ "Sult = 9)(hn (o) — D)z (5)ds
-/ St~ 5)(hho) — D (5)ds]

=1 5006 (hn(o) — I)zs ¢ - 8)ds
~ [ $(6)000) - Daat e - )as]

< | /0 S (5) (hn(X0)2 — (Do) 2 (t — 5)ds]|
(4.5)

1L (8a(9) = 59) (h0) ~ Dyt~ s)as]
y /0 S()(h(Ao) = D2(u(t — ) — w(t — s))ds].

Since Sy, (t) i, () are uniformly bounded on compact subsets of [0, 00) and

since lim hy(Ao) = h(XAo), the first term in (4.5) converges uniformly to
n—o0

0 on compact subsets of [0,00). Since S(s)(h(Xo) - I)z is bounded on

compact subsets of [0, 00) and since u,(s) converges uniformly to 1/ (8)

on compact subsets of [0, 00), the third term converges uniformly to 0 on
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compact subsets of [0,00). Thus, it suffices to estimate the convergence
of the second term in (4.5). By integration by parts,

1 (5005) = 5(6)) 000 = D ¢ = e
<l 1 (S5t - SW®) (h(0) — 1)z

4.6
9 + esssup |u"(s) I/II Si(s) - (8))(h(>\o)—1)znd&

3€[0,t]

Since sup |1l Lip, < L implies that sup esssup lur(s)| < oo and since
nelN  0<s<

for every z € X, st (s)z converges uniformly to SI!(s)x on compact
subsets of [0, 00), expression (4.6) converges uniformly to 0 on compact
subsets of [0,00). Thus, {S,(t)y}n converges uniformly to S(t)y on
compact subsets of [0,00) for every y € D. Since D = X and S, (t)
are uniformly bounded on compact subsets of [0, 0), we conclude that

Sn(-)x converges uniformly to S(-)z on compact subsets of [0, 00) for
every x € X. O

5. Analytic convoluted solution operator families

In this section we extend the method of analytic integrated solution
operator families for (VE) in [9] to analytic convoluted solution operator
families and characterize them. They coincide with analytic resolvents
in [12] when k(¢#) = 1 and and p = al!! where a ¢ L}, .([0,00); T).
Compared to the characterization of convoluted solution operator fam-
ilies (Theorem 3.4) the conditions for H(\) := k()\)(l d,u(/\)A) Ly
the characterization of analytic convoluted solution operator families are
relatively much easier to be checked.

DEFINITION 5.1. Let A be a closed linear operator on X and let u €
BV ([0,00); ) for some € > 0. Let k € L}, ([0, 00); C) with abs(k) < co.
Let 0 < 6y < J and let M > 0 and w > max{e, abs(k)} be some
constants. Let S be a function from {0} U X4, to L(X) satisfying the
following conditions.
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(i) Its restriction S| o) is a k-c.s.0.f. of exponential type (M;w) with
generator (A, u).
(ii) S is analytic on the sector g g, .
(iii) For every 6 € (0, 6p), there exists a constant My > 0 such that
sup |le”*S(2)|| < M.

z€¥9,0
Then § is said to be an analytic k-convoluted solution operator family

(analytic k-c.s.o.f. for short) of analyticity type (w;fy) with generator
(A, ).

THEOREM 5.2. Let A be a densely defined closed linear operator on
X and let p € BV,([0,00);C) for some € > 0. Let k € L}, ([0, 00);T)

loc

with abs(k) < co. Let 0 < 6y < 7 and let w > max{e, abs(k)} be a
constant. Suppose that (I — E[\I,(A)A)_l exist in L(X) for all A\ > w and
that c/il\z # 0 on and k has no zero in C.,. Define H : (w,00) — L(X) by
H(\) = E()\)(I — C/ZZL()\)A)—I. Then the following are equivalent.
(i) The pair (A, p) generates an analytic k-c.s.o.f. S of analyticity type
w; ).
(ii) (The f)unction H has an analytic continuation to the sector X, 9,4z
such that sup ||(A —w)H(X)| < oo for every 6 € (0, ).
GEw_9+g.

PRroOF. It follows from the remark following Definition 3.1 that the
function H extends to the half plane C,, (we denote the extension of H by
the same letter H unambiguously) and H(A)z = S(A)z for every = € X
and X € €. Suppose that (i) holds. Then by Theorem 1.6, the function
H also admits an analytic continuation to the sector Ew,gﬁg such that

sup  [[(A—w)H(N)|| < oo for every 6 € (0, 6p). Thus, (i) implies (ii).
AEEWVG‘*:%

Suppose that (ii) holds. It follows from Theorem 1.6 that there exists
an analytic function § : ¥y g, — L(X) such that sup |le™“*S(2)| < oo

2€ X090

for every 8 € (0, 6y) and
H(M\z = k\(/\)(I - @(A)A)"lw = / e MS(t)zdt
0

for all A > w and z € X. It follows from the exponential boundedness
of S on subsectors ¥¢ ¢ that there exists a constant M > 0 such that
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1S(t)]| < Me** for all t > 0. Thus,

1 . 1 o _ . Oot‘] —(A—w
IO = 5 [ e stz < b [ Lo 0-orage)

1
(/\__m”ivﬂ

forallz € X, j € Ng, and A > w. It follows from Theorem 3.4 that there
exists a k-c.s.o.f. S; with generator (A, ). By the Uniqueness Theorem
(Theorem 1.2), S = S; on (0,00). Thus, S(0, =) can be continuously
extended to [0,00) as S(0) = S1(0). Thus, S is an analytic k-c.s.o.f.
with generator (A, u). d

The following is an immediate consequence of Theorem 1.6 and the
estimate (5.1) improves Corollary 2.1 in [12].

REMARK. Let S be an analytic c.s.of. of analyticity type (w; 80)
with generator (A, u). Then, for each 6 € (0,6p), there exists a constant
Cp > 0 such that

(5.1) 12*5®(2)]| < CoeR® #(jwl|2] + 1)

for all z € 3¢ ¢ (See Theorem 1.6).
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