A SHORT PROOF OF BAILEY'S FORMULA

ARJUN K. RATHIE AND JUNESANG CHOI

ABSTRACT. The aim of this research is to derive an interesting formula due to Bailey by a very short method.

1. Introduction and Results Reguired

Professor Bailey [1] had obtained the following very interesting and useful formula involving the product of generalized hypergeometric series:

(1.1)
$${}_{0}F_{1}(-; \rho; x) \times {}_{0}F_{1}(-; \sigma; x) = {}_{2}F_{3}\left(\frac{1}{2}(\rho + \sigma), \frac{1}{2}(\rho + \sigma - 1); \rho, \sigma, \rho + \sigma - 1; 4x\right).$$

Very recently Rathie [3] has given a very short proof of the well-known Preece's identity by utilizing the formula (1.1).

The following formulas will be required in our present proof. Kummer [2]:

(1.2)
$$e^{-x} \times {}_{1}F_{1}(\alpha; \rho; x) = {}_{1}F_{1}(\rho - \alpha; \rho; -x);$$

(1.3)
$$e^{-x/2} \times {}_1F_1(\alpha; 2\alpha; x) = {}_0F_1\left(-; \alpha + \frac{1}{2}; \frac{x^2}{16}\right).$$

Bailey [1]:

$$(1.4) \quad F_1(\alpha; 2\alpha; x) \times {}_1F_1(\beta; 2\beta; -x) \\ = {}_2F_3\left(\frac{1}{2}(\alpha+\beta), \frac{1}{2}(\alpha+\beta+1); \alpha+\frac{1}{2}, \beta+\frac{1}{2}, \alpha+\beta; \frac{x^2}{4}\right).$$

Received February 28, 1997. Revised August 30, 1997.

1991 Mathematics Subject Classification: primary 33C20, secondary 33C10, 33C15. Key words and phrases: Hypergeometric series, A Bailey's formula.

It is not out of place to mention here that recently Rathie and Nagar [4] have given two interesting formulas contiguous to (1.3).

The aim of this research is to derive the Bailey's formula (1.1) by a very short method.

2. Proof of the formula (1.1)

In order to prove (1.1), it is sufficient to verify the following formula

(2.1)
$${}_{0}F_{1}\left(-;\rho;\frac{x^{2}}{16}\right)\times\left(-;\sigma;\frac{x^{2}}{16}\right) \\ = {}_{2}F_{3}\left(\frac{1}{2}(\rho+\sigma),\frac{1}{2}(\rho+\sigma-1);\rho,\sigma,\rho+\sigma-1;\frac{x^{2}}{4}\right).$$

Indeed, replacing x^2 by 16x in (2.1) immediately reaches at our desired formula (1.1).

Start with the first part of (2.1):

$$_{0}F_{1}\left(-\,;\,\rho;\,\frac{x^{2}}{16}\right)\times{}_{0}F_{1}\left(\,-\,;\,\sigma;\,\frac{x^{2}}{16}\right)$$

using (1.3)

$$= \left[e^{-x/2} {}_1 F_1(\rho - \frac{1}{2}; 2\rho - 1; x) \right] \left[e^{-x/2} {}_1 F_1(\sigma - \frac{1}{2}; 2\sigma - 1; x) \right]$$
$$= {}_1 F_1(\rho - \frac{1}{2}; 2\rho - 1; x) \left[e^{-x} {}_1 F_1(\sigma - \frac{1}{2}; 2\sigma - 1; x) \right]$$

using (1.2) in the second expression

$$= {}_{1}F_{1}(\rho - \frac{1}{2}; 2\rho - 1; x){}_{1}F_{1}(\sigma - \frac{1}{2}; 2\sigma - 1; -x)$$

using (1.4)

$$= {}_{2}F_{3}\left(\frac{1}{2}(\rho+\sigma),\,\frac{1}{2}(\rho+\sigma-1);\,\rho,\,\sigma,\,\rho+\sigma-1;\,\frac{x^{2}}{4}\right),$$

which completes the proof of (2.1).

References

- [1] W. N. Bailey, Products of generalized hypergeometric series, Proc. London Math. Soc. 28 (1928), 242–254.
- [2] E. E. Kummer, Über die hypergeometrische Reihe F(a; b; x), J. Reine Angew Math. 15 (1836), 38–83.
- [3] Arjun K. Rathie, A short proof of Preece's identities and other contiguous results, submitted for publication, 1977.
- [4] Arjun K. Rathie and Vishakha Nagar, Kummer's second theorem involving product of generalized hypergeometric series, Le Matematiche (Catania), 50 (1995), 35-38.

Arjun K. Rathie
Department of Statistics
University of Brasilia
70910-900, Brasilia-D.F. (Brasil).
On leave from Department of Mathematics
Dungar College (MDS University), BIKANER-334001
Rajasthan State, INDIA

Junesang Choi Department of Mathematics College of Natural Sciences Dongguk University Kyongju 780-714, Korea