A CHARACTERIZATION OF SUPERSOLVABLE SIGNED GRAPHS

Young-Jin Yoon

Abstract. We characterize supersolvable signed graphs by using simplicial nodes and some signed graphs Δ_2 , L_k .

1. Introduction

Signed graphs were studied by Zaslavsky [5]. Also a characterization of supersolvable graphs was proved by Stanley [3]. This paper will give a characterization of supersolvable signed graphs.

A graph (or unsigned graph) Γ consists of a set of nodes, $N(\Gamma)$, and a set of arcs, $E(\Gamma)$. There are two kinds of arcs. A link, written e:vw, has two distinct endpoints, v and w. A half arc, written e:v, has one endpoint, v, the other end tailing off into space. We use the term ordinary graph to mean there are no half arcs or parallel links. A path in a graph is a finite sequence of distinct links of the form $e_1e_2 \ldots e_k$ where $e_i:v_{i-1}v_i$ for each $i=1,2,\ldots,k$. It is closed if $v_0=v_k$. And a path is said to be simple if it has no parallel links.

A signed graph Σ consists of an unsigned graph, denoted $|\Sigma|$, and a partial mapping $\sigma: E(|\Sigma|) \to \{+, -\}$, the arc labeling, which is defined on all links. A circle is a simple closed path. Let $C = e_1 e_2 \dots e_k$ be a circle in Σ . Then C is said to be balanced if $\sigma(e_1)\sigma(e_2)\dots\sigma(e_k) = +$. A signed graph Σ is said to be connected if every two nodes are connected by a path in Σ .

We assume familiarity with the basic concepts of the theory of (combinatorial) geometries [4]. To fix our terminology, let G be a finite geometric lattice. Let S be the set of points (or atoms) in G. The lattice

Received March 8, 1997. Revised August 16, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 05C75.

Key words and phrases: signed graph, simplicial node, supersolvable.

This study is supported by KOSEF-RCAA-1997.

structure of G induces the structure of a (combinatorial) geometry, also denoted by G, on S. The cardinality |G| of the geometry G is the cardinality of the set S of points.

In a geometry G with a rank function r, a flat x is modular if $r(x) + r(y) = r(x \wedge y) + r(x \vee y)$ for all flats y of G. And a flat x is a copoint if r(x) = r(G) - 1. A geometry G is supersolvable if its lattice G contains a maximal chain of modular flats.

Given a signed graph Σ , we can define a corresponding signed-graphic geometry $M(\Sigma)$ whose points are the arcs of Σ in the following way.

If Σ has r nodes, then label $N(\Sigma)$ by $\{1,2,\ldots,r\}$. Let $\{b_1,b_2,\ldots,b_r\}$ be a basis for a projective geometry PG(r-1,3) of dimension r-1, representable over GF(3). Consider a representation $f:M(\Sigma)\to PG(r-1,3)$ such that $f(M(\Sigma))$ is a subset of $\{b_i,b_j\pm b_k; 1\leq i\leq r,1\leq j< k\leq r\}$. Let $\varphi:E(|\Sigma|)\to M(\Sigma)$ be the bijection such that

- (1) e is a half arc incident on a node $i \iff f(\varphi(e)) = b_i$;
- (2) e is a link signed \pm incident on two nodes $j, k \iff f(\varphi(e)) = b_j \mp b_k$.

A node v is called *simplicial* if the following conditions are satisfied;

- (1) If two non-parallel links e, f are adjacent on v, then there exists a link g such that $\{e, f, g\}$ is a balanced circle.
- (2) If a half arc e and a link f are adjacent on v, then there exists a half arc g not equal to e such that f and g are adjacent.
- (3) If two parallel links e, f are incident on v and w, then there exists a half arc g incident on w.

Suppose that Σ is a connected signed graph. Then the rank of Σ , denoted by $r(\Sigma)$, is $|N(\Sigma)|-1$ if Σ has no half arcs or parallel links. Otherwise $r(\Sigma)$ is $|N(\Sigma)|$.

An ordinary graph is called *chordal* if every circle of length at least four contains a chord, that is, a link joining two nonconsecutive nodes of the circle. The following characterization of supersolvable graphic geometries was proved by Stanley [3].

THEOREM 1.1 [3]. A graphic geometry $M(\Gamma)$ is supersolvable if and only if the ordinary graph Γ is chordal.

PROOF. (\Longrightarrow) Use induction on the rank of $M(\Gamma)$. (\Longleftrightarrow) Use the following classical result.

Theorem 1.2 [1]. Every chordal ordinary graph Γ has a simplicial node. Moreover, if Γ is not a clique, then it has two nonadjacent simplicial nodes.

2. Main Results

When we say H is a modular copoint of Σ , it means that the set of arcs in H is a modular copoint of $M(\Sigma)$.

LEMMA 2.1. Let Σ be a connected signed graph.

- (1) If Σ has a simplicial node v, then Σv is a modular copoint of Σ .
- (2) Let H be a modular copoint of Σ . Then
- (i) If Σ contains a node v not in H, then v is simplicial and $H = \Sigma v$.
 - (ii) If H contains all nodes of Σ , then H is an ordinary graph.

PROOF. (1) By the definition of a simplicial node v, the set of arcs in $\Sigma - v$ is a modular copoint of $M(\Sigma)$.

- (2)(i) Since Σ is connected, there is a link e between v and a node w in H. If there is another link f between v and a node w' in H, then $\{e, f, g\}$ is a balanced circle for some link g: ww' in H. If there is a parallel link f to e, then there exists a half arc g on w. If there is a half arc f on v, then there exists a half arc g on w. Thus v is a simplicial node and $H = \Sigma v$.
- (2)(ii) Note that H contains all nodes of Σ . If H contains a half arc or parallel links, then the rank of H is the rank of Σ , a contradiction. Thus H contains no half arcs or parallel links.

Let P_n be the cycle matroid of K_n where K_n is the complete graph on n vertices. By Δ_2 , we denote the signed graph of P_4 without half arcs. By L_k , we denote the union of two signed graphs of P_{k+1} without half arcs such that their intersection is the signed graph of P_k without half arcs. A signed graph is *supersolvable* if its geometry is supersolvable.

LEMMA 2.2. Let Σ be a connected supersolvable signed graph. If Σ contains no simplicial nodes, then Σ is either Δ_2 or L_k for $k = 2, 3, \ldots, r(\Sigma) - 1$.

PROOF. If Σ contains no half arcs, no parallel links, then Σ is an ordinary graph. Thus Σ contains a simplicial node by Theorem 1.1 and Theorem 1.2. Therefore Σ contains a half arc or parallel links.

Assume that Σ contains a half arc. Let H be a modular copoint of Σ . Then Lemma 2.1 implies that H is an ordinary graph. By Theorem 1.2, either H is complete or H has two nonadjacent simplicial nodes. If H is complete, then each node is simplicial in H. Since no node is simplicial in Σ , every half arc is incident on all nodes of Σ , a contradiction. If H has two nonadjacent simplicial nodes, then these two nodes have half arcs. But H has no link between those half arcs. Thus Σ does not contain half arcs.

If Σ contains only one parallel-link set, then Σ is not connected. Thus Σ contains at least two parallel-link sets. Let H be a modular copoint of Σ . If two parallel-link sets are disjoint, then H is not modular. Thus every two parallel-link sets are adjacent. If parallel-link sets are not incident on some node, then that node would be simplicial. Thus the set of parallel-link sets span Σ . It follows that H is complete and Σ is either Δ_2 or L_k for $k=2,3,\ldots,r(\Sigma)-1$.

By Lemma 2.1 and Lemma 2.2, we have the following characterization for supersolvable signed graphs.

Theorem 2.3. Σ is a supersolvable signed graph if and only if one of the following conditions holds:

- (a) The signed graph Σ has a sequence of simplicial nodes $v_2, v_3, \ldots, v_{r(\Sigma)}$ such that $H_i = H_{i+1} v_{i+1}$ is a rank-i subgraph for $i = 1, 2, \ldots, r(\Sigma) 1$, or
- (b) There exists a sequence of subgraphs $H_1, H_2, \ldots, H_{r(\Sigma)}$ and a unique integer $j, 2 \leq j \leq r(\Sigma) 1$ such that for all $i \neq j$, there exists a simplicial node v_{i+1} with $H_i = H_{i+1} v_{i+1}$, and $H_j = \Delta_2$ or L_{j-1} .

Kahn and Kung [2] defined splitting in geometries. Let G be a geometry. Then G splits if G is the union of two of its proper flats. G is said to be non-splitting otherwise. To describe non-splitting supersolvable signed graphs, we define the adjacency set of a node v, denoted by Adj(v), by the following conditions.

A half arc e on a node w is in $Adj(v) \iff$ either v, w are joined by a pair of parallel links or a half arc on v is joined by a link to e.

A link e is in $Adj(v) \iff$ there are two non-parallel links f,g adjacent on v such that $\{e, f, g\}$ is a balanced circle.

COROLLARY 2.4. Σ is a non-splitting supersolvable signed graph if and only if a signed graph Σ has a sequence of simplicial nodes v_{i+1} in $H_{i+1} - H_i$ for $i = 1, 2, ..., r(\Sigma) - 1$ such that each H_i has rank i with $H_i = H_{i+1} - v_{i+1}$ and $r[Adj(v_{i+1})] = i$ except having at most one H_3 by Δ_2 .

COROLLARY 2.5. A non-splitting supersolvable graphic geometry is a cycle matroid of a complete graph.

References

- [1] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71 - 76.
- [2] J. Kahn and J. P. S. Kung, Varieties of combinatorial geometries, Trans. Amer. Math. Soc. 271 (1982), 485-499.
- [3] R. P. Stanley, Modular elements of geometric lattices, Algebra Universalis 1 (1971), 214-217.
- [4] D. J. A. Welsh, Matroid theory, Academic Press, London, 1976.
- [5] T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982), 47-74; erratum, ibid. 5 (1983), 248.

Department of Mathematics Kunsan National University Chunbuk 573-701, Korea E-mail: yoonyj@ks.kunsan.ac.kr