338 stzHPNC|EE =2 4T Ml 25=(97.2)

dlole] A sfol 4] 8|22 1 w2ks]y o
7123 5gde W 64 48 2

2 o

T EEE BT A4 2 QUM delge B4 Ao dehle i) 23Yo WA onEZoE Lk
71 A A2 volE B4 PF L Aot A oy B4 YL WAH BT 2 HelEHES 3
=ETY Bl fate] 7t =29 Y] get FUA BANDNT BH B = Do) As o] 24 g
TE A A A0 A gt dolE Aol B2 45 ASE HFY 4 Y= Y Akt 71 &2
HE Y dTAFTESY 4T MRS A8 9 497 COREDB WY djoliu[o] & AZE Aofale) o
WE Foto] HAY F2TE ZHe dolHd totd 4% BHL S 49 Aho)A HAY Helefof et
o 7128 g 2 44 dRAZEG ALE F2Bo] £48 ¥ UYL Ba

Effective Parallel Hash Join Algorithm Based on
Histogram Equalization in the Presence of Data Skew

Ung Kyu Park ' - Hwang Kyu Choi ™" - Tag Gon Kim 't

ABSTRACT

In this paper, we first propose a data distribution framework to resolve load imbalance and bucket overflow in
parallel hash join. Using the histogram equalization technique, the framework transforms a histogram of skewed
data to the desired uniform distribution that corresponds to the relative computing power of node processors in
the system. Next we propose an efficient parallel hash Join algorithm for handling skewed data based on the
proposed data distribution methodology. For performance comparison of our algorithm with other hash join
algorithms, we perform simulation experiments and actual execution on COREDB database computer with
8-node hypercube architecture. In these experiments, skewed data distibution of the join attribute is modeled

using a Zip[like distribution. The performance studies indicate that our algorithm outperforms other algorithms
in the skewed cases.

1. Introduction As performance becomes a critical issue in large

database applications, parallel database systems are

receiving increasing attention in both theory and

*g;ﬁ?g‘ﬂ%ﬁﬂ AT 19943 427] Post Doc. A7AY practice. In relational database systems, join operations
1t 4 3 L9987 A48 are the most complex and time consuming ones which
Tﬂ ;g il] _ﬂ%i;ﬂ}:}g]‘ d?g" g;‘!’;ﬁ;}a ATt limit performance of such systems. Many parallel join
EEH 511996 89 139, HArgE:19969 119 82 algorithms have been proposed for parallel relational

CIOIEd HXH SHOIA SIAEDS MBI 7153 SN0 e gl 2

database systems[6, 8, 10]. Among them, the parallel
hask join algorithm(PHJA) has been found to be
superior to other join algonithms for the uniform dis-
tribution of datal6, 10].

In real databases, it is often found that certain
values for a given attribute occur more frequently
than other values. This phenomenon is referred to as
data skew. It is known that data distribution for
many textual databases follows a variant of Zipf's
law, representing skewed data distribution{7]. With
such data distribution, the PHJA shows two major
problems in performance:load imbalance and bucker
overflow[3]. This is because data skew can give rise fo
non-uniformn distribution after hashing. Thus, the
effectiveness of the PHJA depends on the degree of
uniformity in data distribution. As pointed out in [6, 11],
most algorithms proposed for the PHJA limit exploiting
parallelism as the skewness of data distribution
becomes large.

This paper proposes an efficient algorithm, called
skew resolution join algorithm(SRIA), for parallel join
operations with skewed data. We propose a method-
ology for partitioning relations evenly across all
processors in a parallel database system. Using the
histogram equalization technique, the framework
transforms the histogram of skewed data to umiform
distribution that corresponds to the relative comput-
ing power of node processors in the system. For per-
formance comparison of our algorithm with other
hash join algorithms, we perform simulation experiments
and actual execution on the COREDB database com-
puter with 8-node hypercube architecture. The per-
formance studies indicate that our algorithm exhibifs
better performance compared with other algorithms
in the skewed cases.

In this paper, the histogram transformation technique
used for data partitioning of our proposed join algorithm
is described in chapter 2. We discuss our data distri-
bution framework and parallel join algorithm based
on the histogram transformation in chapter 3. In

chapter 4 and 5, the performance of our proposed

i

g

ai

join algorithm is evaluated and compared with other
parallel hash join algorithms by using simulation and
experimentation on COREDB database computer.
Finally, conclusions are discussed in chapter 6.

2. Histogram Equalization Methodology

Suppose that x is a discrete random variable and g (%)
is a monotonic transformation function of the discrete
real variable x. Then the histogram equalization process
can be considered as a transformation y=g). In the
transformation, the input random variable X, ranged
over x, X3, %,(x; < x, < --- < x,), is mapped inio
an output random variable ¥, ranged over y;, ¥3,-, ¥k
(N = ¥, = --- < ¥p), such that the output probablhty
density follows a uniform density.

Since a histogram of discrete random variables can
be approximated by continuous random variables, we
first obtain the transfer function in the continuous
case. Because the transformation is monotonic, the

fundamental theorem of random variable[9] follows

that f‘y (y) f x((J;)

probability densities of x and ¥, respectively and g7(x) is

where f;(x) and f5(¥) are the

the derivative of g(x). Hence, ﬁ 56 dy-——j.: Sz()dx.

The integral on the right is the cumulative distribution
function F;(x)=P@® <) of the input variable x.
Thus

[oray=Fs .

In the special case for which the output density is
1
forced to be a uniform density, f3 (y)=——— for
Yx—N
¥ < ¥ = ¥y, the histogram equalization transfer function
becomes

y=g@)=(x—3) Fz () +. 00)

Let us now return to the discrete case. Suppose that

340 SIFRHCIEE =BX MW H2597.2)

Hs (x) for x=1x,, x,,--,%, represents the fractional
number of occurrence frequencies of imput values.
Then the cumulative probability distribution of the
input variable, F; (x), is approximated by its normalized

cumulative histogram as follows:

F;(x) %i H;(m).

mex,

Hence equation (1) can be modified by

y=g@=0@x—y) L Hz(m) +y. @

mmz,

3. New Parallel Hash Join Algorithm

The following assumptions are made in the remain-
der of this paper. The parallel database system has P
antonomous processors numbered by 1, 2,.., P, each
having its own memory and disk, which are linked
through an interconnection network. There exist two
joining relations labeled as R and S in the database,
with R being the smaller one. Initially, both relations
are horizontally partitioned into disjoint subsets of
the tuples and evenly distributed across all the pro-
Cessors.

3.1 Data Distribution Framework for Load Balancing
Qur data distribution framework using histogram

equalization methodology for parallel joins is shown

in Fig. 1. Initially, we have a histogram of data values
of the join attribute for a relation. Then, we hash the
data values. Finally, the histogram of the hashed
values is transformed into a uniformly distributed his-
togram using equation (2). Thus, given an arbitrary
data histogram, we can obtain even distribution of
data among processors.

In our histogram equalization, an input random
variable x indicates the k distinct hashed values of the
join attribute and an output random variable ¥ cotre-
sponds to the processor id, numbered by 1, 2,.... P.
Then the histogram equalization transfer function is
obtained from equation {(2) as ‘

y=g®)={ P"’EOH; (m (3
where [1 is the ceiling function.

Since the transfer function in equation (3) is mono-
tonically an increasing function, an upper boundary
value, x, for each partition is obtained by inverse
transformation of equation (3). That is, the upper
boundary value of the ith processor can be obtained
by £7'(Z). Let the P boundary values be v, v, 2p
and the smallest hashed value of the join attribute of
R be 7,. Then, a hashed value of the join attribute, &,
falls into the range v;—, << a < v; for 1<i<Pand,in
particular, into the range vy < 2 < p, for processor 1.
Fig. 2 shows an example for determining the boundary

Frequency of Frequency of Relative Computing Power
Data Values Hashed Data Values in Number of Tuples
A
Data Values Hashed Data Values Processor ID
Histogram of
Initial Hashed Data . Histogram of Relative
Histogram Hash Values N Hlstogram Computing Power
Zipts Non-uniform Transformation| Desired
Distribution Distribution Distribution

(Fig- 1) Data distribution framework for parallel joins.

—_ O

GIOIE 2 SHOIM BIAE 2 $1J7[#0l| 7]%ES TSEO! W2 iy 2D 421 341

P
] E—— i

Processor 1D

MmN MNESEEEammARAARm SRR R AEm .-

Hashed Value of Join Attribute in R

(Fig- 2) Transfer function for histogram equalization.

values from a transfer function.

One complication arises in determining boundary
values for partitioning in the presence of data skew. If
£7'G)=g~'(j) for i # j, the processor i(< 5) would
have much more tuples than other processors and
processor j would have no tuples at all. Fig. 2 shows
such complication case where one hashed value maps
into different processors. In the case, it is still possible
to equalize the histogram of hashed values by wni-
formly distributing the tuples with the same hashed
value to the processors into which the value is
mapped. For example, suppose that the hashed values
of a join attribute in a relation R with 9 tuples are
{1, 2, 3,3, 3,3, 3, 3,4}, and that we wish to partition
over three processors 1, 2, and 3. By taking inverse
transformation of equation (3), three boundary values
are {3, 3, 4} (sce Fig. 2). Thus, tuples {1, 2, 3, 3, 3, 3,
3, 3} are mapped into processor 1, the tuple {4} is
mapped into processor 3, and no tuple is mapped into
processor 2, However, this is not the case for an even
distribution of tuples. To make the distribution to be
even, we distribute 1/6 of the tuples {3, 3, 3, 3, 3, 3}
into processor 1, 1/2 into processor 2, and 1/3 into
processor 3. As will be shown in section 3. 2, par-

titioning the tuples {3, 3, 3, 3, 3, 3} in such a way is
possible because each processor has the cumulative
histogram of the hashed values. Finally, for correct
join operations, all the tuples of § with the value
should be distributed to the processors in which
associated tuples of R are assigned.

3.2 Basic Procedure of Skew Resolution Join Algor-
ithm
The basic procedure for our join algorithm, called
skew resolution join algorithm(SRJA), consists of three
major phases as follows. '

Phase 1. Histogram evaluation phase

1.1 Each processor teads its portion of R, hashes the
join attribute of each tuple and obtains a local
cumulative histogram of the hashed values in par-
allel.

1.2 Each processor broadcasts its own local cumulative
histogram, evaluates the global cumulative histogram
using received local histograms for R in parallel.

1.3 Each processor determines the boundary values in
parallel.

Phase 2. Partitioning phase

Each processor partitions and distributes its i)ortion
of both relations wsing the histogram equalization
transfer function and the boundary values. As a result
of this phase, the corresponding partitions of the two
relations that have the same ranged boundary values
reside on the same processor.

Phase 3. Joining phase

Each processor finally performs the joining step by
using the conventional hash-based join algorithm on
the partition pairs in parallel.

The I/O accesses from secondary storage and com-
munication cost through an interconnection network
becomne major limiting factors on the performance of
parallel join operations. Thereforé, the join algorithm
should be carefully designed in order to minimize the

342 BRFPH2ST] =EX M43 M 2%(97.2)

1/0 and communication costs. A useful general obser-
vation is that an imbalance in the number of tuples of
the smaller relation R per processor is much worse
than an imbalance in the number of tuples of the
larger relation S per processor. This is because an
imbalance in the number of building tuples per pro-
cessor requires extra buckets in the local joins, thus
driving up the number of I/Os significantly[10]. The
partitioning scheme in our algorithm only attempts to
balance tuples of the smaller relation R per processor
to minimize the I/O cost. Thus, in contrast to the
PHJA, our partitioning scheme has only one extra
scan of each processor’s portion of the smaller
relation R. Moreover, our scheme requires additional
communication cost for broadcasting the local histo-
grams to each processor.

Note that during the local joining, the size of each
bucket should be smaller than the memory capacity.
However, nonuniform distribution of the join attri-
bute values may penerate bucket overflow. The per-
formance diminishes in the presence of overflowed
buckets becaunse it requires an extra I/O to spool to
disk and then re-read to perform the join[3, 10]. We
can also use the histogram equalization technique to
resolve the bucket overflow. That is, we can adopt the
histogram equalization techmique for locally partitioning
the portion of the relations distributed at each pro-

cessor into several buckets suitable in memory.

4. Simulation Experimentation

Simulation experiments are conducted for perfformance
comparisons of the following four join algorithms:the
parallel hash join algorithm(PHJIA), our skew resolution
join algorithm(SRJA), the bucket-spreading hash join
algorithm(BSJA) of [5], and the load balancing join
algorithm(LBJA) of [3]. The BSJA[5] and the LBJA[3]
are algorithms designed for handling data skew. The
performance of the algorithms is evaluated in the
presence of data skew.

4.1 Simulation Model

In our model, the four join algorithms are simulated
to obtain their total execution time. The total execution
time comprises the CPU time, the 1/O time, and the
communication time. The execution time during the 7th
phase is sum of the three components: T =77, +T%.,
4Tk, Thus the total execution time for the join
operations can be expressed as T=3_ T

The following assumptions are made in simulation
experiments:the cost for writing the joined results
mto disks is not taken into account because this cost
has the same effect on each join algorithm,the net-
work has an ability of broadcasting and point-to-point
communication with the same transmission cost.

Since it is known that data distribution for many
practical situations follows a variant of Zipf's Law][7],
our experiments use synthetic sample databases following
the Zipf’s distribution. In the Zipf’s distribution, the
probability of a duplication for the 7th join attribute

value over N possible values in a relation is given by

c 1
o ; ——— gu-0
b= FER 1 i< N, where c=—a—, Hy
Hy

N
1
=;.)=:1 70-0) @

In the distribution, # =1 corresponds to the uniform
distribution, while § =0 corresponds to a highly skewed
case.

The simulation experiments are performed on the
three cases of samples data distributions: § = 1(uniform
distribution case), §=0.2(mnild skew case) and #=0
(heavy skew case). Each data in synthetic sample
database for simulation experiments is obtained by
random number generation by use of the equation
(4). For the purpose of a variance reduction on mean
difference between the simulated costs of two algorithms,
the same synthetic database is used to simulate the
join algorithms|1].

The parameter values of simulation experiments are
as follows. The size of the relation S is ten times the

size of the smaller relation R. The memory size on

CIOIE] BIxH siOIAM BIAEDRY B= 7|0l 7ikst TRE0! W sy 28 LTS 343

cach processor is M= K/P. The domain size for the
join altribute of cach relation is 10000. The rest of

parameters are set 1o the values shown in table 1{11].

{Table 1) Parameter values for simulation experiments.

™ [Time Lo compare with two attributes 3uS
% |Time 1o compute a hash function of a key 9uS
£™ |Time 10 move a tuple in memory 208
%7 | Time to build a join result tuple 1048
% | Time to update a variable in memory 4u8
£ |Time for CPU to send a page over network lmS
#7 |Time for CPU to receive a page over network ImS
% |Time to transfer a page between disk and memory | 20msS
#™ |Time to transfer a page in network ImS
»n |Number of luples in a page 100
h |Number of elements in hislogram table 1000
H {Size in pages of histogram lable /1000

4.2 Simulation Method

Simulation experiments are execution driven. That
is, performance is measured while actually executing
the four join algorithms. The PHJA is experimented
by the following steps. The execution time for the
partitioning phase is calculated in terms of the number
of the basic operations by performing actual hash-based
partitioning of the synthetic sample database. The
execution time for the joining phase is evaluated by
calculating the CPU and I/O time costs based on the
number of I/O operations on the skewed partition.
The total execution time for the PHJA is evaluated by
adding the costs of the two phases.

The SRJA is experimented by the following steps.
The execution time for phase 1 and phase 2 of the
SRJA is calculated in terms of the number of the
basic operations by performing actual partitioning
based on the histogram equalization methodology of
the synthetic sample database. The execution time for
the joining phase is obtained by the same method as
used in the PHJA. The total execution time for the
SRJA is evaluated by adding the costs of the three
phases for each. The BSJA and the LBJA are
experimented similarly.

Our performance evaluation requires many simu-

lation runs with different data sets for the same par-
ameter values. This is because data partition based on
a hash function depends greatly on the data values of
the join attribute in the data sets. For improving pre-
cision of experimental results, every simulation experi-
ments are performed 10 times with the same parameter
values. We take a mean value of the results of ten
trials.

4.3 Simulation Results

Several simulation experiments are perfoﬁned by
considering the three points of view:the effects of
relation sizes, the effects of the system configurations,
and the effects of the degres of data skew. Fig. 3
shows simulation results.

Fig. 3(a) shows the effects of the PHJA and the
SRJA on relation size in the three sample databases:
uniform distribution case(§ = 1), mild skew case (6=02)
and heavy skew case(6=0). The simulation results
show that 1) the total time costs of the PHJA and
SRJA are linearly incremented by relation size, 2) the
difference in the total time costs between the PHIA
and SRJA in the heavy skew case is higher than that
of the mild skew case and 3) the difference of the
total time costs between the two algorithms in the
uniform distribution case is little. B '

In Fig. 3(b), we show the effects of the PHJA and
the SRJA on the number of processors in two skewed
sample databases. As the number of processors
becomes large, the performance of the PHIA is rapidly
degraded in the heavy skew case because of bucket
overflow during the local joining phase. In this case,
we show that SRJA outperforms the PHJA.

Fig. 3(c) shows the effects of the degree of data
skew in the PHJA, the SRJA, the BSJA, and the
LBJA. As the degree of data skew becomes larger,
performances of the PHJA, the BSJA, and the LBJA
are degraded rapidly. But performance of the SRJA is
not degraded as much. as them. In the figure, we
observe-that 1) our algorithm outperforms other skew
handling algorithms(the BSJA and the LBJA)[3, 5] in

344 SREEACISE] =EX] M4 B 2x=(97.2)

2000 .
1800 | PHIA(8=00) —— S=10R P=20 MR :
SRIA(9=00) ——
PHIA 6 =02} o]
1600 ' SRINB=02) -w—
- PHIAC®=10) —~—
T 1400 | SRIA8=1D) -n- ,
gmoo L y
£ 1000
=
€ ol
H
S eo0t
400 |
200 ¢ y,.vﬁ""'
o . . .
0 10

2 4 i3 B
Sire of Smallel Relation A [Pages) (Thousands)

(a) Execution time versus relation size.

7000 | PHJA(B=00) == R=10000 S5=10R M<R/F
SAJAO=00) ——
PHIA(Bx02) -o-—
_ 6000 | SRIA8=02) -
8
gsoom
@a,
E 4000
E
&
S 3000
<
o
2000 |
1000 |
o — a4 T :
0 0 20 B0 40 S0 &0 20 80 90 100
Number of Processor
(b) Execution time versus number of processors.
3000
R=10000 S=10R P20 M=200 PHIA ~—
SFUA ——
2500 BSIA -a- 4
LBJA =
g
& 2000 X -
-
E
E
£ 1500]
2
-
i
1000 4
0 02 08 1

04 0.6
Degree of Data Skew

{c) Execution time versus degree of data skew.

(Fig. 3) Simulation results.

120000 T T T T T T T T T

100000 4

gplas]
3

uimbar ol T)

&mp%ude [N
. B

Amplitude [Number of Tuples] {Thousands}
[+:]
Q

all the cases, 2) in contrast to the PHJA, the BSJA
and the LBJA performs well in the higher skewed
cases, but the performance of the BSJA and the
LBJA exhibits worse than that of the PHJA in the
slightly skewed case and the uniform distribution
case. This is because the BSJA and the LBJA require
more processing time for CPU, disk 1/0, and com-
munication to manage data skew.

Fig. 4 shows histograms for hashed values before
and after partitioning using the four join algorithms

in the heavy skewed case. For the smaller relation R,

R=10000 5=10R P=20 COriginal Hislogram ——

i“. u llh[ul.. |! l.l) ..uLL..[“J_IJu Lol

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Input Random Variable (Hashed Value of Join Atiribute)
(a) Histogram before partitioning.
149 T T T T T T

R=10000 S=10R P=20

8

2

8 10 12 14 16 18 20
Processor ID

(b) Histogram after partitioning.

(Fig. 4) Histograms for smaller relation R in a heavy
skewed case.

IOIES XY SHOIM BIAE T2 V27 |0| 7|258 2% ey ey 28 ¢uel

our algorithm gives relatively evenly allocated partitions
among all the processors. However, other algorithms
generate very large skewed partitions, leading to load
imbalance and bucker overflow which canse perform-
ance degradation of parallel join algorithms. We also
observe that Hua’s algorithm(the LBJA) gives rela-
tively smaller skewed partitions than Kitsurega’s
algorithm(the BSJA) and the PHJA.

5. Experimentation on A Hypercube
Database Computer

Since the system parameters differ greatly from
machine to macchine, the simulation model decribed
previously allows us fo perform sensitivity analysis
with respect to various combinations of system and
workload parameters. Therefore, the simulation results
will be useful in projecting the performance of the
proposed algorithm on various hardware platforms.

Nevertheless, to investigate the performance of the
PHJA and the SRJA in real databasc system and pro-
vide more faith of simulation experiments, we mmple-
mented our algorithm in COREDB[4], which is a
3-dimensional hypercube machine developed by KAIST
(Korea Advanced Institute of Science and Tech-
nology)’s Computer Research Engineering Labora-
tory. Currently, each node of the machine consists of
a 68030 CPU, 8Mbytes DRAM and disk controllers.
The operating system is UNIX System V release 3.

5.1 Experiments

For our experiments, we used benchmark relations
with the join attribute generated from Zipf's distri-
bution[2]. Table 2 shows the benchmark relation
schema. As in simulation experiments, experiments
are conducted on the three cases of sample data
distributions: # = [(uniform distribution case), =02
(mild skew case), and 0=0(heavy skew case). Each
synthetic sample database for the experiments is
obtained by a random number generation by use of
the equation (4). We also generate both relations with

{Table 2> Benchrark relation schema.
Attribute| Type |Rangeof | Order Comment
Values
Partition| Integer 09999 | Sequential Unique
Join | Inte 0199 | Rand Duplicate
om | Inleger ARCOM | Zipf Distribution
String | Character Fixed | 100 Bytes in Size
Amay

the same tuple distribution.

The parameter values for the experiments are as
follows. The size of the smaller relation R is 2000
tuples. The size of the larger relation S is five times
the size of the smaller relation R. The size of each
tuple in both relations is 108 bytes. Thus total size of
the relation R is about 200 KBytes and that of the re-
lation § is about 1 MBytes. The domain size for the
join attribute is 200 and the number of distinct
hashed values in the histogram table for the SRJA is
50.

5.2 Expetimental Results

We performed the experiments for the three cases
on the 4node and 8-node configurations. Fig. 5
shows our experimental results. In the figure, par-
titioning time for the SRJA is obtained by adding
costs for the histogram evaluation phase and the par-
titionjing phase of the SRJA. From the results, we
observe that 1) time cost for the local join operations
is a dominating factor on performance of the parallel
join algorithms in the skewed cases, 2) the SRJA
outperforms the PHJA in the skewed cases.

To show the relative efficiencies of the two join
algorithms, we measure the performance gain of the
SRJA over the PHJA as follows:

[Performance Gain="1ruia"Tswa_ X 100%]
PHIA

In the equation, Tpyy, and Tgg,, are the total
execution of the. PHJA and SRJA, respectively, Table
3 shows the performance gain measured from the

346 TREEXCISS] =2X| M4P M 2=2(97.2)

experimental results. In the table, we observe that in
the heavy skew case(§=0.0), as the dimension of
hypercube increases, the performance gam is increased.
This is because the PHJA gives a highly skewed par-
tition in the heavy skew case and the size of such par-
tition is not linearly decreased as the number of node
processors in the system increases. However, the size
" of the maximum skewed partition in the SRJA is
linearly decreased as the number of node processors
increases. In the mild skew case(§=02), as the
dimension of hypercube increases, the performance
gain is reduced. This is because the size of the maxi-
mum skewed partition in both the PHJA and the
SRJA is linearly decreased as the number of node

Processors increases.

{Table 3) Experimental results : performance gain-

0=0.0 0=02 =10
4-node 16.39 24.58 -0.02
g-node 23.58 13.81 0.05

5.3 Simulation Model Validation

Experimental results obtained from implementation
of our algorithm on the COREDB are useful to vali-
date our simulation model. The results of the expe-
riments are shown in Fig. 6(a). The same workload
and system parameters are used to derive the corre-
sponding simulation results which are shown in Fig.
#b) for comparison. We observes that the experimental
results and the simulation results behave very simi-
larly. We also observe that the running times of the
two algorithms are higher in the implementation
experiments. This is due to the fact that overhead
derived from virtual memory envioronment of UNIX
is assumed to be ignored in our simulation model.
The COREDB has relatively small size of the local
memory capacity for supporting the join operations
with large databases. Thus, the large join results
generated from the skewed data lead to many

_operations for swap-in and swap-out in the virtual

1200 T T T
Partition tmie n PHIA
Join tma in PHJA
Parition tme inSRA |___] |
Join time in SRJA

7

)
...

Pracessing tma (sec)
8
T

7

i
A

i
NN

<
b

oz 1.0
Variations of 8 (skewness)

(a) 4-node hypercube computer.

1200 T T T
Partinon time n PHJA

Jom time in PHIA [Ny
parton wme st [] |
Join time in SRIA LA

7

Pracassing iime {sec)
&
T

s

A T R

Z

Vi

00 02 10
Variations of @ (skewness)

{b) 8-node hypercube computer.

(Fig. 5) Experimental results : execution time versus sys-
tem configuration.

memory environments.
6. Conclusions
In this paper, we first have proposed a data distri-

bution framework for load balancing in parallel hash

join. Our data distribution framework employs the

GIOTE HTH Bl0llA] SIAEDRY WHE7HO 71258t TRSO Wad o] TS PSS 347

1200

PHJA{4-Nods .

1000 -

Execulion Tlms |Saconds]

400 |

200 t
o - . "
0.0 0.2 1.0
Degree of Data Skew
(a) Implementation Results.
1200 T T
PHIAG-Node) o+
SFIA(-Node) ~—

1000 | PrLiAGNode) =
-
§ wol
w0
8
-
E 600 F]
£
s
2 00 |- 1
3
w

200 |

[+

Deagres of Data Skew

(b) Simulation Results.

(Fig. 6) validation of Simulation Model.

histogram equalization technique, which evenly distri-
butes data across processors. We then have proposed
an cfficient parallel join algorithm based on the data
distribution framework which takes data skew into
account. Our proposed join algorithm is carefully
considered to minimize the 1/O and communication
costs and is designed to reduce bucket overflow and
load imbalance for real world situations.

The performance of the proposed join algorithm
has been evaluated by simulation experiments and
actual execution in a hypercube database computer
with several synthetic databases and compared with
the other parallel hash join algorithms. Comparison
results have shown that the proposed algorithm has
better performance than the other algorithms in the

= 2

skewed cases, with negligible overhead in the absence
of data skew. '

REFERENCES

[11 J..-Blanks and J. S. Carson, Discrete-event Sysiem
Simulation, Prentice-Hall, Englewood Cliffs, NJ,
1934,

2] D. Bitton, D.J. DeWitt, and C. Turbyfill,
Benchmarking database system:a systematic
approach, In Proc. of Internat. Conf. on Very
Large Database pp. 8-19, 1985.) ‘

[3] KA. Hua and C. Lee, Handling data skew in
multiprocessor database computers using partition
tuning, In Proc. of Internat. Conf. on Very Large
Database, pp. 525-535, 1991.

[4] Y.C. Kim, et al, A hypercube database com-
puter-COREDB, In Proc. of 1993 UNIX Sym-
posium, pp. 449-459, 1993.

[5] M. Kitsuregawa and Y. Ogawa, Bucket spreading
parallel hash:A new robust, parallel hash join
method for data skew in the super database com-
puter(SDC), In Proc. of Internat. Conf. on Very
Large Database, pp. 210-221, 1990.

[6] M.S. Lakshmi and P.S. Yu, Effectiveness of par-
allel joins, IEEE Trans. Knowledgé and Data
Engineering 2(4), pp. 410-424, 1990.

[7] C.A. Lynch, Selectivity estimation and query
optimization m large databases with highly skewed
distributions of column values, In Proc. of Internat.
Conf. on Very Large Database pp. 240-251, 1983.

{8] P. Mishra and M.H. Eich, Join processing in
relational databases, ACM Computing Surveys,
24(1), pp. 63-113, 1992.

[9] A. Papoulis, Probability, Random Variables, and
Stochastic Processes, Mcgraw-Hill, New York,
NY, 1991.

[10] D.A. Schneider and D.J. DeWitt, A performance
evaluation of four parallel join algorithms in a
shared-nothing multiproceésor environment, In
Proc. of ACM-SIGMOD Internat. Conf. on

348 si=REEAEE =EX] 4P M 2z(97.2)

Management of Data, pp. 110-121, 1989.
[111 C.B. Walton, A.G. Dale, and R.M. Jenevein, A

taxonomy and performance model of data skew

effects in parallel joins, In Proc. of Internat.
Conf. on Very Large Database, pp. 537-34%,
1991.

2
g 2

19843 AP AAF e
(341

19861 FE=E7ed A7 H
AR A AD

19959 g=aEiried A7 3
ARFaA(eAD

19861 ~1991d S#=AAFEAD

T AFHANEE A7

19913 ~8A AMYUEts ANt =9

FABo: ¥ E o] o] A2, PE]TTe] A

8 AAd, 2484

= & 7

19843 Ao ey ARF
(24D

1986 #=HE7ed A7 2
HAZEFH(HAD

19893 SFAErled #Hol g
ARAZ A AD

19903 39 ~1993d 29 74

U AT =R

1993 3¢ ~34 FRANYE AFHFIH F =T

19943 7€~19953 7€ Univ. of Florida Database

R&D Center WE 2

FAEof: Y do|gu o] A, HE W T A
A Axd, WE /0 AlA", A7 b
B Wo]& A]AH

2! EBEF o

o} - [
19750 R atm ARFETHEAD
1980 72U &R AATATHAAD
1988 Department of Computer Engineering, Uni-
versity of Arizona, Tucson('ltA})
198013~1983d g LA Em FATEHFH 27
19873 ~1989'3 Department of Electric and Com-
puter Engineering, University of Kansas,
Lawrence o4
19919 99~RA FIHA7EQ A7 R AT
ot w4
4] Bok: Discrere-cvent system modeling/simulation,
Computer system architecture, Software
engineering methodology

