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EEG Model
by Statistical Mechanics of Neocortical Interaction
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ABSTRACT

Brain potential is described using the mesocolumnar activity defined by averaged firings of excitatory
and inhibitory neuron of neocortex. Lagrangian is constructed based on SMNI(Statistical Mechanics of
Neocortical Interaction) and then Euler Lagrange equation is obtained. Excitatory neuron firing is
assumed to be amplitude-modulated dominantly by the sum of two modes of frequency w and Zw.
Time series of this neuron firing is calculated numerically by Euler Lagrangian equation. [ «L related to
low frequency distribution of power spectrum, [@H hight frequency, and Sd(standard deviation) were
introduced for the effective extraction of the dynamic property in the simulated brain potential. The
relative behavior of TwL, I wH, and Sd was found by parameters & and 7 related to nonlinearity and
harmonics respectively. Experimental [ wL, I wH, and Sd were obtained from EEG of human in rest
state and of canine in deep sleep state and were compared with theoretical ones.
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I. Introduction

Statistical mechanical approach of neocortical
interaction’ ™ leads to define analytical models
of EEG. Their variables and parameters are
reasonably identified by ensembles of synaptic
and newronal interaction. SMNI has demon-
strated its capability in describing large scale
properties of STM(short term memory) and
EEG phenomena{S]. The explicit algebraic form
of the probability distribution for mesoscopic
columnar interactions 1s driven by microscopic
neuronal interactions. The microscopic inter-
actions are described by electrical and chemical
interaction within synaps. Their parameters all
lie within experimentally observed ranges.
This mesoscopic probability distribution has
successfully described STM phenomena[B]. It
also has described the systematic of EEG
phenomena, when used as a basis derived
from the most probable trajectories using the
Euler-Lagrange variational equationsm. These
results provide strong quantitative support for
an accurate and intuitive perspective, portraying
neocortical interactions as having physical
mechanisms that span disparate spatial scales
and functional or behavioral phenomena. We
take this approach to understand the physical
mechanism generating EEG and quantify
emotional states.

The purpose of this study is twofold : First,
we denve a nonlinear partial differential
equation from the Lagrangian for
mesocolumnar neocortex interaction. This field
equation governs the dynamics of the

macroscopic quantities measured by EEG.
Second, with respect to a particdar EEG
experiment with a canine in the deep sleep
state and human in rest state we solve the
obtained field equation analytically and
numerically and prove that it is reasonably
ohserved

consistent  with  experimentally

phenomena.

II. Dynamic EEG-Models by Statistical
Mechanics of Neocortex Interaction(SMNI)
and Lagrangian

Brain EEG potential @(t) can be modeled by

(D) = F(aM® (D + bM(D) (1

where M" and M stand for the mesocolumnar
averaged excitatory and inhibitory neuron
firings. Indices E and I represent the
inhibitory  firing  fields,
respectively as shown in Fig. 1. Constants a

excitatory  and

and b are their contribution factors of
excitatory and inhibitory neurons respectively.
Eq.(1) can be expanded by

O() =~ (aME+ bMY + e(aM® + sM)* + -

using Taylor's expansion where the order of
the above equation indicates one of spectrum.
Higher order terms than second order can be
neglected because trispectrum from EEG
signal is found to be typically much less than
the bispectrumm. Theirfore @(t) is defined to
be
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Brain potential
Neuro-fiber reflecting firings of
neural mass in
neocortex
(D) = (aM® + bM) + e(aM® + bM")? P=TIP[M(7: T+ 0 | MO 9]
= 8 — M(r; t+ D)8
and let M5(t)=cM(t), where constant ¢ zd: ( ;’50’ (r 2
represents the ratio of excitatory and (X6, — M (r; t+ r))]‘j[ P,
inhibitory neurons and can be determined for g
v _ ) 2];1(27rr62)'1/2exp(—r4)
each electrode site. Then the model equation (3)
is obtained as the following
—o.F. .
where P, = exp (= 0;F%) is the

Q)

O(t) = aM®(H) + ea® (M" (D)* (2)

where ¢ = a+ b
c

The conditional probability distribution for

the measured scalp potential @(t) is defined

by

exp(F;) + exp(—F))
microscopic conditional probability of neuron j
firing given previous firings within 7 of other

Vi— ;ajk’/jk .
- is
(”;a;’k( V;Z‘k + ¢fk)) 1z

the threshold factor, L is Lagrangian, and G

neurons k. F; =
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represents E and I V; means the threshold
potential of j neuron. Each neuron may
contribute many synaptic interactions to many
other neurons. A neuron may have as many
as 10'~10° synaptic nteractions. Within time
r~bms, the distribution of quanta of
chemical transmitter released from neuron k to
neuron j has the mean ay, where ax =Au( o«
+1)/2+Byx. A Is the conductivity weighting
polarization transmission, dependent on k
finng. ox=1 if k fires but ox=-1 if k does
not fire. Bi is a background including some
nonsynaptic and long-range activity. This
definition of o« permits a decomposition of ax
into two physical contributions. rj and Zx
are the mean and the variance of
contributions to neuronal electric potential
respectively. EEG in one eletrode site is
focused on in this study. The spatial change
“ME and external inputs“'4] from other sites
in L in Eq.(3) induced from the above
mentioned probability, are
neglected for simplicity. Therefore the final

conditional

form of Lagrangian L of EEG dynamics is
given by Eq(4).

1 p_ N2
L 202((1) m) (4)

where m and ¢ are an averaged value and
standard deviation of @(t) respectively, and @
(t) is the first time derivative of @(t).
Lagrangian L in Eq.(4) can be rewritten with
Eq.(2) by

L(ME, ME b=

2%;2(QME + 2ea’ MEME — m)*

The stationary states of brain function are
focused in this study. It 1s constrained based
on experimental EEG that ¢, m in L are kept
contant for the same stationary state, although
they are the functions of M. Euler-Lagrange
equation becomes

ME+ 2ea( M) + deaM®M*
(6)
+ (2eaM®)*ME+ (2 caM®’ME =0

If we neglect the second order term in
Eq.(2), 1e. e=0 Euler-Lagrange eguation
becomes M®=0. This reduces to a trivial
non-periodic case. We can assume ME(Y) for
solution of nonlinear differential Eq.(6) as
follows;

ME(t) = Re [hE‘f‘\/ZhTE(fS (ei‘”t+ 7621@1)]

= KE4V 20%% (cos(wd + ycos Qwd)

where A%, H™%(t) and 7 are the average
value of M'(t), variation of M™(t) and a
factor related to harmonics, respectively. Note
that A (t) is changed very slowly compared
to ¢, The numerical solution of EEG is
obtained by the substitution of Eq.(7) into
Eq.(6) and its result is shown in Fig. 2(a).
The comparison between the experimental
EEG data in a certain interval and the
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E .U')
E =
n Fig. 2
/ Comparison of the
0.32s 19e simulated EEG(a)
time time with the experimental
EEG() ; The unit of
vertical axis is
arbitrary
simulation results shows that they are well 1 B
. . . F; = 7 B, Fg= B,B—?
matched with each other, as shown in Fig. 2. 4 2y 3
Substltutlon of Eq.(‘7) into Eq:(6) and taking a B, = Via+ 2 3eahE, B, — 7B,
time-average of this results into an averaged
Euler-Lagrange equation: By = 2ea®, By = 27B;, (8)

G
[(Fi+ F}) +2F,Fre * +(Fi+ F5)eflG

G
+ 3R+ F)+ 5 FiFre  +(F+ Fedle’

G
—(L (P P+ 3 RuFse? —(Fi+ FDe1=0

where

_ _w - B
Fl 273, FQ Z/UB, F3 4}'B,
F,=1pB F= % p F,=-3%pg
4 4 ’ 5 27/2 > 6 2}' ’

_ b _ ﬁ EE
a-—(a+6), G—In(B%h )

We solved the EEG dynamical Eq.(8) with
an arbitrary initial condition of G(0) =21, and
G(0) = 1.1. We consider an asymptotic behavior
of G(t) after sufficient time evolution. The
frequency f 1s fixed to be 5 Hz, that is w =2
af=10x, based on the spectral range of
f~3f which
experimental dominant range of about 1~20
Hz. A factor ¢ in Eq.(3) is fixed to be 5 since

about corresponds  to  the
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excitatory neurons exist about 5 times as
many as inhibitory neurons in a general neural
system. Other fixed variables are determined
such as a=21, b=15 h"=10 and m = 127
for fitting simulated range with experimental
range of EEG.

IIf. Comparison of the simulated EEG with the
experimental one in human and Canine

To extract the unknown dynamic property
from the simulated and the experimental EEG,

Iwl, TwH and Sd are introduced. Twl is
defined by

log P(2w) — log P(w)
log2w— log w

Iwl =—
(9)

log(i)—gzw) )
== a)

log 2

which means the slope for range between w
and 20 in the log-log power spectral space
(logw, logP(w)). IwH is defined by and

= 0

2
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entropy oC stability

Information = - entropy-

T

l

Stability o¢ 1/ Lyapunov exponent

Correlation dimension o¢ Information

Power spectrum IwL IwH [¢—* oC 1/ correlation dimension
Founir transform
Correlation function
Sd = 4J(variance)

Mean ~ constant

Fig. 4 Block diagram representing the relations of IwL, IwH, Sd to other dynamic variables

JwH = — log P(3w) — log P2w)
log3w— log2w

_ PECRG,)) (10

which means the slope of range between 2w
and 3w. Sd means the standard dewviation of
brain potential @(¢) and is described by

P (0, —m)?

Sd = N

where N and m are the total sampling number
and the average of brain potential @(t) over
N, respectively. Jwl and I@H can provide
some information related to  spectral
distribution of low frequency ranges and of
high frequency ranges respectively from EEG
as shown in Fig. 3 In general, Twl is
different from J«H in EEG. Sd can provide
some information related to the amplitude

from EEG. Three variables [wL, IwH Sd can
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find the temporal change of dynamic
properties because they are related indirectly
to other dynamic variables as shown in Fig.4.
Note that Iwl and IwH are inversely

18] and

proportional to the correlation dimension
inversely proportional to the negative of
Shannon entropy“g] approximately in low and
high  frequency  components of EEG
respectively. That is, correlation dimension is
proportional indirectly to Shannon information.

The information is defined as the negative of
Shannon entropy which is a measure of the
lack of knowledge. The information can be
regarded as a measure for the knowledge of
which event of the sample set is to be
expected, if the probability distribution in
phase space is only known.

The Twl-IwH - Sd relation is investigated
from the simulated EEG in various conditions
of &, 7 parameters, and then compared with
the experimental EEG. Iwl, IwH, Sd can be
constructed from the simulated EEG as

follows.

B
| wL = — log ﬁ? = |log2
Bz + 33 Ele

B,
=2 1B
EleG }

| wH= —log — B log2  (12)

Sd=SeG+Se~2Q where S,= B3+B4VE
1 2 =TV ,

B, +B B}
S="vz VB E= g

Iwl, IwH, Sd are calculated using the

(a)

Fig. 5 Behavior of Jwl, IwH, Sd with the
increment of € and 7
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Fig. 6 [wl-IwH-Sd relation for the simulated
EEG signals

solution, G of Eq.(8), and their behaviors of
Twl, TwH, Sd are investigated with the
increment of & and 7 parameters from 0 to 5
by 0.2 unit step as shown in Fig. 5 In Fig.
5(a), @l has a minimum value when 7 is
nearly 1. Its decrease with 7 before 1 is
steeper than its increase with 7 after 1.
However, Iwl is horizontally flat and tumns
out to be insensitive withe. In Fig. 5(b), [ @wfl
has no mimmum peak and increases slowly
with the increment of € less than about 1. In
Fig. 5(c), Sd decreases exponentially with the
increment of 7y and €. The combined result
of Jwl-IwH-5d relation is given in Fig. 6. It
1s observed that Sd becomes larger as Jwl
becomes smaller and [ @H becomes larger.
Computerized  electroencephalograph  was
used to measure EEG signal from 4 persons

with eye closed and from a canine in a deep
sleep state. The instrument consists of EEG-
amplifier, 8-bit analog to digital converter,
EEG-computer interface, which sampled scalp
voltage at 21 electrode at a rate of 204.8Hz for
human and sampled scalp voltage at 1
electrode at a rate of 250Hz for canine. The
silver chloride cup electrodes were placed,
using a conductive paste, on the 10/20
international electrode system for human and
on the left part 4 cm distant from the vertex
and at the vertex as a reference for canine. In
order to compare experimental results with
simulation, f@L, IwH, and Sd are calculated
from each EEG signal of 21 channels with
1024 sampled data from 4 subjects according
to the definition given by Egs.(9), (10), and
(11). The Iwl-IwH-Sd relations from 4
subjects are shown in Fig. 7 and similar to
that of the simulation as shown in Fig. 6.

It is suggested that the deep sleep state of
a canine may be characterized by €, 7
parameters estimated by comparison with the
simulated [ @L-I wH-Sd relations. [@l, I@H,
and Sd are calculated from 32 sequential sets
with 1024 sampled data of EEG from a canine.

The resulting [@wl-TwH, [wl-Sd and IowH
-Sd relationships are shown in Fig. 8(a),
respectively.  On  the other hand, we
calculated ITwl, ITwH, Sd from simulated
EEG with e fixed to be 20 and 7 varied
from 0 to 5 by 0.2 unit step. Whatever ¢ 1is
fixed to be any constant near about 2.0, the
general trends of Iwl, ITwH, Sd did not
change much, as shown in Fig. 8(b). The
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subject 1 subject 2

Fig. 7 IwL-IwH-Sd relation for the experimental EEG signals of 4 subjects
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Fig. 8 Comparison of the experimental results with simulation in canines deep sleep state ; Each axis
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result in Fig. 8(b) which indicates the slope in
the marked ellipse area with 7 value range
about 1~2 is similar to that of Fig.4, thereby
It is indicated that the sleep stage of a canine
refers to € =20 and 7 =1~2 of simulation
model.

V. Conclusion

The realistic physical modeling of EEG was
performed in this study. Much more work in
this model is needed and the investigation in
the case of various brain function must be
carried. This model is valuable in that it
shows the possibility of physiological
explanation of EEG reflecting the brain

function.
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