Abstract

Lung Preservation Study for Above 20 Hours of LDPG Solution in Canine Lung Allotransplantation

Chang Kwon Park, M.D. *, Kun Young Kwon, M.D. **, Young Sun Yoo, M.D. *

Background. Limited ischemic tolerance of the lung has remained one of the factors that limits the expansion of pulmonary transplantation as a treatment for end-stage pulmonary disease. Numerous studies on safe long term preservation for lung transplantation have been performed for the purpose of developing ideal preservation solution with extracellular type or intracellular type solutions. In this study, we examined the efficacy of LDPG solution in lung preservation longer than 20 hours by comparison with modified Euro-Collins solution.

Methods. Thirty-four adult mongrel dogs were divided into two groups. Donor lungs were flushed with LDPG solution(n=9) or modified Euro-Collins(MEC) solution(n=8) and stored for 24 hours at 10°C. All donor lungs were perfused through the pulmonary arteries with solutions containing prostaglandin E1 and verapamil. Left canine lung allotransplantations were performed. Assessment(hemodynamic indices and arterial blood gas analysis) of left implanted lung was made by occluding the right pulmonary artery for ten minutes using pulmonary artery Cuff. Assessment was repeated at the interval of 30 minutes, one hour, and two hours later after reperfusion and then chest X-ray, computed tomogram and lung perfusion scan were obtained. In survival dogs follow-up studies were done with assessment with chest X-ray, computed tomogram of the chest and lung perfusion scan on 7th day postoperatively. After preservation above 20 hours, pathological examinations for ultrastructural findings on right lung were performed in each group.

Results. With respect to arterial oxygen tension, LDPG group was superior to MEC but there was no statistical significance for 2 hours after reperfusion. Mean pulmonary artery pressure was less increased(p<0.05) and cardiac output higher(p<0.05) than MEC group until 2 hours after reperfusion. After 2 hours of reperfusion, both groups showed transplanted lung function deteriorated gradually. Perfusion scan of the transplanted lung in LDPG group showed better perfusion rate in immediate post-reperfusion, 3 days and 7 days later respectively but there was no statistical significance and correlation with PaO2 and computed tomographic views. In scanning electron microscopy of pulmonary artery after preservation,
LPDG group relatively shows less irregular protrusion of the inner surface of endothelial cell of pulmonary artery than MEC group.

Conclusions. We concluded that LPDG solution can offer safe lung preservation above 20 hours with adequate immunosuppressive therapy and prevention of the infection.

(Korean J Thorac Cardiovasc Surg 1997;30:949-60)

Kew word: 1. Lung transplantation
2. Organ preservation

서론

폐이식 분야에 대한 관심은 타 장기에 비해 이식술에 불리한 요건을 해결하기 위한 끊임없는 연구 노력이 진행되고 있으며 특히 고품급의 안전한 장기보존법과 보다 나은 폐 관류보존액의 개발의 의거는 지금도 세계적으로 많은 연구 결과로써 나타나고 있다. 연구자들은 폐를 안전하게 보존하고 면역 질환의 지역에서 공여래를 획득하여 안전한 폐보존 상태에서 이동이 가능하도록 장시간의 폐보존을 위한 개발의 일환으로 폐관류액의 비교실험들이 활발하다. 현재 임상에서는 Euro-Collins 용액이나 University of Wisconsin(UW)용액으로 10시간까지 폐보존이 가능한 것으로 여겨지고 있다[2].

폐를 오래동안 보존하는 폐관류 및 보존액으로는 Euro-Collins 용액이나 University of Wisconsin(UW)액과 같이 세포내액성 용액보다 세포외액성 용액이 더 우수하다고 보고하고 있는데 이는 세포내액성 용액이 고갈물이 함유된 용액으로 폐동맥의 세포내액성 용액은 탄분부유가 탄분부유가 된 후의 역류증가에 의해 폐동맥에서 혈관의 수축이 일어나는 단점이 있기 때문이다[3]. 공여래의 보존동안에 폐관류-보존액의 효과에 대한 정확한 기전에 대해서는 잘 알려져 있지 않다. 폐는 혈행 폐보존동안에 산소를 이용할 수 있는 유일한 기관이라는 점 때문에 호기성 포도당대사에 대한 중요성이 제기되며 폐보존온도가 4℃보다 10℃가 적절하다고 보고하고 있다[3]. 본 연구에서는 한국산 젤산을 모델로 하여 24시간 10℃에서 세포외액성 용액인 LPDG용액을 이용하여 폐보존후에 좌측 일측폐이식술을 시행하여 이식의 기능을 평가하려 세포내액성 용액인 modified Euro-Collins(MEC)액과 비교하였다.

연구대상 및 방법

1. 연구대상

본 연구는 34마리의 한국산 젤산 성견을 압수 구분없이 이용하여 17마리씩 공여래와 수용견으로 나누어 17례의 좌측 일측폐이식술을 시행하여 폐관류액으로 LPDG용액을 사용한

| Table 1. Compositions of the Preservation Solutions |
|-----------------|----------------|
| | LPDG | MEC |
| Na | 155 mMol/L | 10 mMol/L |
| K | 3.5 mMol/L | 108 mMol/L |
| Cl^- | 102 mMol/L | 14 mMol/L |
| Mg^2+ | 1.4 mMol/L | 4 mMol/L |
| PO_4^- | 33 mMol/L | 57.5 mMol/L |
| Sulphate(SO_4^-) | 2 mMol/L | 4 mMol/L |
| Glucose | 10 g/L | 32.7 g/L |
| Dextran 40 | 20 g/L | 0 g/L |
| pH | 7.4 | 7.3 |
| Osmolarity | 345 mOsm/L | 340 mOsm/L |

* LPDG: Low Potassium Dextran Glucose solution
MEC: Modified Euro-Collins solution

9례와 8례에서 modified Euro-Collins(MEC)용액을 사용하였다. 각 군에서 실험전의 선택은 무작위로 하였고 각 용액의 조성은 Table 1과 같다.

2. 연구방법

1) 공여래 젠수

공여래에서 공여래의 획득수술은 이전의 발표된 논문에서 자세히 기술하였다[9]. 간략히 기술하면 건강한 성견 17마리를 공여래로 하여 마취 전처리 및 마취유지 목적으로 Ketamine 10～15 mg/Kg 근주, Sodium thiopental 10 mg/Kg 정주 그리고 Atropine 0.6 mg/kg Cefatrex 1.0 g을 정맥주사하고 기도삼관후 호흡기(Aika EUA-900 Ventilator)는 100% 산소흡입, 인호흡량은 500～550 ml 그리고 호흡수는 12회에 맞추어 놓고 전신마취하에 우측 내화동맥에 18 gauge 케라탄 테타를 넣어 동맥혈압을 추적과 동맥혈가스분석을 측정할 수있게 하였고 사지에 삼관도 전극을 전자라 심박호흡을 계속 감시하였다. 종심질환중재를 가하여 고통을 없애고 기정맥을 분리한 후 상하관청맥, 삼관내동맥, 폐동맥 및 기관을 막아하여 7번 Silk나 Vena cava tape를 이용하여 경찰에 대비하였다. 주폐동맥에 헤파린(500 U/Kg)을 주입한
후에 6 F 대동맥카테터를 발침봉합으로 삽입하여 40 Cm 높이에서 4℃ 냉장 온도의 페관류제장액(Modified Euro-Collins 액 혹은 Low Potassium Dextran Glucose 용액)을 주입한 준비를 하였습니다. 페관류제장액은 PGE1(200 μg)를 제조액에 투여하였습니다. 페관류제장액은 대동맥을 족하하여 정상적으로 전위되어 있었고, 가스류에 혈관을 가로로 투여하여 페관류체온성도를 측정하였습니다. 상하공정액을 점검하였고, 하중마취술을 시행하여 상하공정액을 정상적으로 전위되어 있었습니다. 각 군은 특별한 혈관내 조영을 채용하여 3 점 공기부착제로 10℃ 온도 유지에서 공기세포반전 준비를 하였습니다.

2) 쪽수전몽공술

수술은 이식수술과 이의의 동반된 문제에서 차세
히 기술하였으며, 이어서 간직한 조건 17
마리의 쪽수전몽공술을 시행한 주의를 투여한 뒤에 18
가지 혈관카테터를 넣어 동맥혈압측정과 동맥혈가스분
석을 하였고 페관류제, 심박출량 및 혈관류제장액을 측정하
기 위하여 우측대뇌혈액액이 Swan-Ganz 카테터를 주입하였으
며 쪽수전몽공술에 정맥카테터를 삽입하여 수술중에 투여한
씨름을 시간당 200 ml 주입하였습니다. 좌측 외부위에서
베타볼로 혈관소독 후 좌측 3번 녹간을 통해 개방하였으
며 가능한 좌측근위정맥의 침관을 피었습니다. 좌측 폐동맥은 첫 번
째 좌측폐동맥지방에서 삽입하였고 우측 폐동맥공지방을
발리하여 Umbilical tape와 Tourniquet 혹은 폐동맥 Cuff을 이
용하여 임시 경장에 대비하였습니다. 심장은 개방하고 좌심방을
혈관감사로 폐쇄한 후 상, 중 및 하부의 폐동맥경질부위를
접계하여 좌심방피질의 민감도를 개방하고 좌측 기관지
는 위제부에서 절단하였으며 절단상부는 기관지감사로 폐쇄하
었습니다.

10℃ 폐관류제장액의 저학증 실험물체에서 심장과 우측폐
를 제거한 후 좌측세는 좌심방의 일부가 합체하에 적당하게
포함되기 위해 우측폐 종격부(Mediastinal lobe)로 연관된
폐동맥계구부를 50 Prolene를 이용하여 폐쇄한 후 충분한 길
이의 좌심방구멍을 확대하여 분리하였습니다.

분리된 좌측세는 1시간동안 폐관류체온속성의 관찰을 목적으로 두 용액과 비교하기 위하여 병리조직감사
을 시행하였습니다.

우선 수송전의 폐동맥경절부위를 절단하고 보관함으로

을 넓게 확장하였습니다. 공기세의 좌심방간의 혈관은 후벽부
50 Prolene을 이용하여 계속 전벽에 이르러 깊은 인속 everting mattress봉합을 하였고 폐동맥은 첫번째 폐동맥경기를 기준으로 역시 50 Prolene으로 연속봉합하였습니다. 마지막으로 기관
지흡기는 기관지와 인속하다가 길이가 있는 우측환측의 환관근
심시한 4-0 Vicryl을 이용하여 기관지와 귀부부 인속봉합의
그리고 인조분기 섭취로 단순봉합(Interrupted suture)하였습니다.
이식수술이 진행되는 동안에 10℃의 공기세의 온도를 유지
하기 위하여 상업에 온도를 측정할 적극을 전자기 수시로 수치
를 보고하여 폐관류체온속성의 관찰을 유지하였고 이식세는 적
코가 없으며 10℃ 온도의 유지를 노력하였습니다. 좌측세의 재관
류시작시 폐동맥과 좌심방검사를 서서히 풀어 혈관내에 존재
하는 기모토를 제거하였고 출혈이 확인된 후 각각의 혈관
부위의 절단을 완료하였습니다. 기관지 및 혈관내부의 생리적외수
를 밝혔습니다. 출혈 및 공기
 누출이 없음을 확인한 후 흡관을 삽입한 후 재관류를 통한
폐동맥 쿠프의 피하조직내에 고정시킨 후 흡관봉합을 마감하였습니다.

c) 출혈 관리

수술을 마친 수신관은 재관류석후(약 30분후) 1시간 후, 2
시간 후에 각각 혈액동적검사(Bowlett Packard 7853C
Monitor)용액의 동맥혈가스분석을 시행하였고 재관류 2시간
에 혈상검사(혈당, 수소와 혈관화족중, 혈관중량 및 혈관수명), 혈관세포나 혈관수명
을 측정하였으며 폐동맥 쿠프를 이용하여 수측 폐동맥을
입시 차단하여 이식세의 기능을 평가하였습니다. 복면조사 폐
동맥의 쿠프의 효과를 분석하고자 세포내농성 용액인 modified
Euro-Collins액과 세포외농성 용액인 Low Potassium Dextran
Glucose(LPDG)액(노조 1:1)을 이용하여 이식세의 기능을 관
찰하였습니다. 또한 폐관류제의 효능을 높이고 이식세의 혈
관내정맥수여를 줄이고 장기 추적관찰을 목적으로 각 관
관류용액에 PGE1 혹은 aminophylline를 정부하였습니다. 이식세의 기능관
찰은 수술 직후, 출혈 3일, 출혈 1주일, 출혈 2주일, 출혈 3주일, 출혈 4주일, 출혈 5주일, 출혈 6주일, 출혈 7주일
의 시점에서 실시하였습니다. 출혈 3일에는 사망사례 이식세의 병
리학적 소견을 관찰하였습니다.

3) 실험결과

실험에 사용한 동물은 한국산 갑동천인 성장에서 양수

박성건 외

피폐식의 폐보존 실험
Table 2. Characteristics of Experiment according to Solutions

<table>
<thead>
<tr>
<th>Solution</th>
<th>Body weight(D/R) Kg±SE</th>
<th>Flushing time min.±SE</th>
<th>Flushing pressure mmHg±SE</th>
<th>Ischemic time hrs±SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPDG</td>
<td>19 ± 1.3/20±0.8</td>
<td>4±0.8</td>
<td>17±2.1</td>
<td>21±0.5</td>
</tr>
<tr>
<td>MEC</td>
<td>21 ± 1.3/23±0.8</td>
<td>4±0.4</td>
<td>18±1.6</td>
<td>21±0.2</td>
</tr>
</tbody>
</table>

Table 3. Data of Hemodynamics with PaO2 and PaCO2 according to Solution after PA cuff

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control LPDG</th>
<th>MEC</th>
<th>Immediate LPDG</th>
<th>MEC</th>
<th>1 hour LPDG</th>
<th>MEC</th>
<th>2 hour LPDG</th>
<th>MEC</th>
<th>3 day LPDG</th>
<th>MEC</th>
<th>7 day LPDG</th>
<th>MEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPAP (mmHg)</td>
<td>16 ± 1.2</td>
<td>17 ± 2.3</td>
<td>24 ± 3.4</td>
<td>30 ± 3.4</td>
<td>25 ± 3.8</td>
<td>36 ± 4.8</td>
<td>28 ± 3.3</td>
<td>29 ± 2.2</td>
<td>33 ± 4.2</td>
<td>34 ± 4.7</td>
<td>37 ± 3.6</td>
<td>40 ± 0.3</td>
</tr>
<tr>
<td>CO2 (L/min)</td>
<td>5.3 ± 0.7</td>
<td>4.4 ± 0.6</td>
<td>2.4 ± 0.2</td>
<td>2.2 ± 0.3</td>
<td>2.4 ± 0.2</td>
<td>2.0 ± 0.1</td>
<td>2.3 ± 0.1</td>
<td>1.8 ± 0.1</td>
<td>2 ± 0.2</td>
<td>1.9 ± 0.1</td>
<td>1.6 ± 0.1</td>
<td>1.6 ± 0.1</td>
</tr>
<tr>
<td>PVR (dyne.s.cm⁻³)</td>
<td>221 ± 24</td>
<td>203 ± 12.2</td>
<td>447 ± 57</td>
<td>376 ± 69</td>
<td>384 ± 56</td>
<td>374 ± 56</td>
<td>363 ± 31</td>
<td>406 ± 45</td>
<td>600 ± 208</td>
<td>615 ± 226</td>
<td>735 ± 231</td>
<td>658 ± 205</td>
</tr>
<tr>
<td>PaO2 (mmHg)</td>
<td>209 ± 20.4</td>
<td>213 ± 7.5</td>
<td>102 ± 18</td>
<td>117 ± 25</td>
<td>160 ± 35</td>
<td>115 ± 21</td>
<td>174 ± 39</td>
<td>137 ± 29</td>
<td>142 ± 38</td>
<td>119 ± 27</td>
<td>87 ± 11</td>
<td>117 ± 28</td>
</tr>
<tr>
<td>PaCO2 (mmHg)</td>
<td>28 ± 5</td>
<td>25 ± 1.5</td>
<td>31 ± 2.4</td>
<td>32 ± 2.6</td>
<td>31 ± 3</td>
<td>35 ± 2.7</td>
<td>29 ± 2</td>
<td>34 ± 2.9</td>
<td>35 ± 3.5</td>
<td>35 ± 1.9</td>
<td>44 ± 3</td>
<td>38 ± 1.1</td>
</tr>
</tbody>
</table>

구분없이 34마리가 사용되었으며 17마리의 좌측 일측폐의실험을 시행하였고 케질류액은 LPDG용액의 효과를 보고자 9례 사용하였고 대조군으로 modified Euro-Collins(MEC)용액을 사용한 데 8례이다. 케질류액에는 양쪽 모두에서 PGE₁을 추가하여 이식대의 기능을 높이기 하였다. 사용된 상관의 제
중은 LPDG군에서 공여근과 수용근에서 각각 20±1.3 Kg가 20±0.8 Kg이고 MEC군은 21±1.3 Kg과 23±0.8 Kg로써 비교적 공여근과 수용근은 비슷한 제중을 선택하였다. 케질류
시간은 LPDG군과 MEC군에서 각각 4±0.8분, 4±0.4분이고 케질류액은 17±2.1 mmHg, 18±1.6 mmHg이며 그리고 총 헬
혈시간은 각각 21±0.5시간과 21±0.2시간으로 양 용액에
서 비슷한 실험조건을 보였다(Table 2).

1) 동맥혈액가스분석

혈액액 cutoff를 이용하여 이식한 좌측폐의 케질류액후의 PaO2와 PaCO2 양상을 보면 50% 산소호흡에서 이식후 3시간 LPDG군은 102±17 mmHg, 31±2 mmHg이고 MEC군은 117 ±25 mmHg, 32±3 mmHg에서 제관류 1시간후에 LPDG는 160±35 mmHg, 31±3 mmHg이고 MEC는 115±21 mmHg, 35 ±3 mmHg로써 이식폐의 기능이 점차회복되는 양상을 보여 제관류 2시간후에는 LPDG가 174±39 mmHg, 29±2 mmHg이고 MEC가 137±29 mmHg, 34±3 mmHg로써 더욱 더 회복이
 tin 양상에서 수술 3일째부터 LPDG는 142±38 mmHg, 35±3 mmHg이고 MEC는 119±27 mmHg, 35±2 mmHg으로써 폐기능의 감소를 보이고 수술 7일째에는 LPDG가 87±11 mmHg, 44±3 mmHg이고 MEC가 117±28 mmHg, 38±1 mmHg로서 감소되는 양상을 보였다. 이는 LPDG와 MEC용액 모두에서 비슷한 양상을 보였다(Table 3)(Fig. 1, 2).

2) 혈액학적소견

제관류 시작후 LPDG군과 MEC에서 평균폐동맥압, 심박출량 및 혈혈관저항을 7일까지 주기 관찰한 소견은 도로
3과 같이 LPDG군의 경우 제관류 30분후 폐동맥동맥압, 심박출량 및 혈혈관저항은 각각 24.4±3.4 mmHg, 2.4±0.2
L/min, 447±87 dyns sec cm⁻⁻³이고 MEC는 각각 30±3.4
mmHg, 2.2±0.3 L/min, 376±69 dyns sec cm⁻⁻³이므로 LPDG와 MEC 모두에서 점차 평균폐동맥압이 상승되었고 MEC에서 더 상승되는 소견을 보였다(Fig. 3). 심박출량은 LPDG와 MEC에서 제관류 후에 7일 동안 조금씩 감소하는 양상을 보
였다(Fig. 4). 폐혈관저항도의 경우 LPDG의 경우 제관류 30분에 증가되었다가 숨후 2시간까지 점차 감소되었으며 MEC의 경우는 제관류 1시간까지 감소되었다가 그 이후 점차 증가되는 경향을 보였다(Fig. 5). 그러나 양 군에서 평균폐동맥
압, 심박출량 및 혈혈관저항에서 의미있는 차이점은 발견
할 수었으나 제관류 1시간제 MEC의 LPDG보다 폐혈관
저항이 유의하게 더 상승하였고(p<0.05) 제관류 1시간과 2
시간에서 LPDG가 유의하게 심박출량이 더 높았다(p<0.05).
그리고 폐혈관저항은 양 군 모두 제관류 2시간까지는 감
소되거나 캐 변화가 없다가 3일과 7일까지 점차 증가하였다.
통계분석은 모든 통계치에 있어서 평균값의 평균치±표준오차
를 사용하였으며 두 용액간의 유의성은 Student's t test로써
분석되었고 p치가 0.05 이하일 때 유의한 차이를 보인다고

- 952 -
Fig. 1. Post-reperfusion PaO₂ changes in both groups after PA cuff(FIO2-0.5)

Fig. 2. Post-reperfusion PaO₂ changes in both groups after PA cuff(FIO2-0.5)

Fig. 3. Post-reperfusion mean PA pressure changes in both groups after PA cuff. * P<0.05

Fig. 4. Post-reperfusion cardiac output changes in both groups after PA cuff. * P<0.05
Table 4. Roentgenographic Grading Score in Transplanted Lung by CT

<table>
<thead>
<tr>
<th>solution</th>
<th>period</th>
<th>post-reperfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 hours</td>
<td>3 days</td>
</tr>
<tr>
<td>LPDG(score)</td>
<td>3 ± 0.2</td>
<td>2 ± 0.7</td>
</tr>
<tr>
<td>MEC(score)</td>
<td>1 ± 0.5</td>
<td>1 ± 0.5</td>
</tr>
</tbody>
</table>

Fig. 5. Post-reperfusion PVR changes in both groups after PA cut-off

Fig. 6. Changes in 99mTc lung perfusion scan in transplanted lung

Fig. 7. Changes in extent of opacity in computed tomogram in transplanted lung.

Fig. 8. Appearance of 3 hours postreperfusion chest computed tomogram in LPDG.

임후에 패혈염의 병소영역도가 덜한 것으로 관찰되었으나 통 계적 유의성은 없었다(Table 4, Fig. 7).

5) 면리조직학적 소견

LPDG 용액군의 평균 생존일은 9.6±3.8일이고 MEC 용액군은 7.6±2일이다. 양 군간에서 사망하거나 사망시킨 사례에 대해 검토한 결과, 허혈성 패혈염의 양과 비교하여 LPDG 용액군에서는 2배, MEC 용액군에서는 1배의 사례가 있었으나 그 중 1배에서는 3일 이내에 사망하였다. 그리고 1배에서는 허혈성 패혈염의 2배 중 1배에서는 신체적인 부분소견 (infarction)이 동반되었다. 그리고 2배에서는 허혈관과 세기관지
내강으로 돌출하는 소견을 볼 수 있었다. LPDG용액을 사용한군에서는 미만성으로 내피세포의 증가가 불규칙한 배열을 보이며 부분적으로 내피세포의 모양을 형성한 반면 MEC용액을 사용한군에서는 비교적 정합한 경계를 보인 부위부터 심한 변화가 보인 부위까지 다양한 형태의 변화를 보였으며 내피세포의 혈관 내강으로 돌출된 소견들이 두드러졌다(Fig. 11, 12).

고찰

세계적으로 페이식 분야는 현재 공여체의 선택, 보존 및 이식술 후에 합병증을 줄이기 위한 방법론에 관한 연구에 관심이 크고 많은 연구가 이루어지고 있으나 금성 및 만성 거부반응에 대한 적절한 처치와 공여체 보존시간의 연장과 보존방법 개선과 보존액 개발 등 해결할 과제들이 많이 남아 있다.

본 연구는 페이식 분야에서 가장 관심이 되고 있는 공여체의 안전하고 장기간의 보존을 위한 폐장기의 보존법 가운데 폐관류 및 보존액의 폐보존효과를 비교관찰하였다. 폐관류 및 보존액은 세포내액성 용액과 세포외액성 용액으로 나열할 수 있다. 세포내액성 용액은 폐부장기의 보존 경우 Collins액이나 다른 세포내액성 용액들이 시사하는 바와같이 입상적이나 실험적으로 가장 적절한 폐관류보존액으로 인증되고 있음. 이름데면 University of Wisconsin액은 간을 48시간 그린 신장과 폐장기 72시간 보관시킬 수 있다고 하였다. 폐장기의 보존기에는 안전한 폐관류액으로 prosstaglandin과 modified Euro-Collins액으로 폐관류시간 6시간 가량이 가능하다고 하였다. 현재까지 여러 실험연구를 통해 폐를 오래동안 보존하는 폐관류보존액으로 새로운액성 용액이 세포

Fig. 9. Appearance of chest computed tomogram on third postoperative day in LPDG. It shows much better condition than immediate postoperative view.

Fig. 10. Perfusion rate at 3 hours, 3 days and 11 days after reperfusion in LPDG.
내해성 용액보다 더 우수하다고 보고하였고 최근 Wagner 등10)도 10°C에서 오래동안 허혈기간에
공유체의 형성에 실패한 상태에서 재구성된 후기구대사를 지원
하는 dextran-glucose를 포함한 세포외액성 용액(DGX)을 개발
하여 만족할 만한 실험성적을 보고하고 있다. Hendry 등11)도
OC의 개심장의 보존용액에서 가역적인 싱크의 냉각손상처
립에서 중재된 냉각손상시 수기 또는 새로운 homeostasis
을 유지하기 위한 최소의 대사과정을 없애는 약 약량을 끼
킬 수 있다고 했다. 본 연구에서는 폐관류보존액으로 세포내
액성 용액인 modified Euro-Collins액과 세포외액성 용액인
LPD 용액에 채보존시 허혈기간중에 에너지네사에 가정이
되는 포도당을 첨가하여 10°C의 채보존온도에서 24시간 보
존한 후에 심장에서 좌측 폐기시술을 시행한 후에 두 용
액의 효과를 비교하였다. 공유체의 안전한 보존과 손 후 채
관류보존을 줄여서는 목적이 이식선의 장기생존을 높은 이
식체의 기능을 평가하기 위하여 강력한 폐관류 환장제인
PGE1과 칼슘감질제인 verapamil을 공유체 적출시에 두어하
였다. Matsushima 등12)는 Euro-Collins액에 verapamil을 첨가하
어 Euro-Collins액 단독으로 사용한 군보다 24시간 안전한 채
관류보존액과 같이 보존효과가 있다고 보고하였는데 산소프리미어장 실질의와
칼슘감질제는 싱크가 신장의 허혈-재관류손상에 효과가 있
다는 보고들13, 14)이 많다. 그러나 폐장기는 타 장기와 달리

Fig. 11. In LPDG group, scanning EM shows partially swollen and/or conglomered (asterisks) endothelial cells, X1,150.

Fig. 12. MEC group shows partially swelling of endothelial cell cytoplasms with some papillary projection, arrows:papillary projected endothelial cell, X1,150.
하혈손상과 연중을 막기 위해서 페보조한 어려움을 이들 손상을 줄이는 방법에 대한 연구가 많다. 본 연구에서는 도 피세식혈에 성인의 생존을 연장하여 폐 기능의 추적관찰을 위하여 수술 LPDG 용액과 ME-C 용액의 성인 차이점에 따른 페보조한 효과를 관찰하고자 하였으며, ME-C 용액에 광동계의 관류반응에 PGE1과 verapamil을 각 용액에 첨가하여 페보조한 실험이었다.

세포내상의 용액이 MEC은 현재 입식에서 특이 미국 위생학자에서 많이 쓰고 있는 페보조한용액이다. Fujimura 등13)은 저분자량 데스터란과 phosphat buffer가 주요 요소로 함유된 세포외액용액을 가지고 48시간까지 페보존실험을 실험시켰다. 이 용액은 현재의 LPD 용액의 기초가 되었으며 Yamazaki 등13)는 생체외 토끼를 모델로써 E-C의 액과 비교하여 LPD액에서 더 높은 동맥혈산소분압과 더 높은 배양손상범 압을 보였다고 하였으며 Keshavjee 등13)는 그룹을 이용한 생체내 실험에서 LPD액으로 관류하여 재관류후의 동맥혈산소분압을 보였다. 이러한 LPD액의 분란의 있음을 설명한 두어의 기초는 없으나 다음과 같은 몇가지 설 명이 가능하다. 첫째로, Kimblad 등13)은 이전의 바이올에 따르는 양방향의 용액은 페관류하에 혈관수축이 더하여 폐관류와 저온상태에 호르는 분포를 도모한다. 둘째로, phosphat buffer는 조직의 산화를 최소화한다. 셋째로, 데스테라는 교 정산소용 효과 때문에 혈관절단 수분의 축적과 혈관구의 응집을 방지하여 더욱 더 고운 관류를 도모한다. 또한 Keshavjee 등13)는 LPD-용액이의 구성성분을 체계적으로 평가하여 성숙-40은 LPD액의 조성에 유의하게 기본하다고 보고하였다. 그들은 데스테라-40의 농도(24 RPM)를 가지고는 교 정산소용때의 양극으로 평가하기에는 불충분하고 저호작용으로 다른 기전들을 통해 incidental 수 있을음을 의미한다.

패관류-보존의 적절함을 평가하는 지표로서 세포관류가 동맥혈산소분압을 공여하여 적절한 신생혈관의 침입으로부터 산화를 방지할 수 있다. 반면에 정상적인 용액은 페관류의 적절한 신생혈관의 침입으로부터 산화를 방지할 수 있다. 즉, 정상적인 용액은 페관류의 적절한 신생혈관의 침입으로부터 산화를 방지할 수 있다.
즉 일측 페이지식후에 효과적이고 지속적인 이식폐기능의 추적관찰을 위하여 바닥에 세포액을 염시 접착할 방법으로 실험용 cuffed을 개발하여 사용하였다. 본 연구에 이전에 박 등26)은 페도메들 cuffed을 사용한 이식폐기능의 평가를 보고하였으며 본 실험에서도 같은 방법을 사용하여 숨 후 1주일이 지났을 때 저순환 폐기능을 추적관찰하였다. 최근 Sundarascan 등27)과 Datic 등27)은 보다 나은 폐보존의 평가 실험모델로서 연속 양축폐 이식실험을 소개하였는데 이는 양측 페이지 실험모델보다 백막착탈이 부담이 양측 폐로 나뉘어지고 폐보존의 효과를 보기 위하여 폐기능의 관찰은 또는 이식체의 기능을 내면해 줄 수 있기 때문에 실험모델로 유리하다고 하였으나 이 방법도 결국 한쪽 폐를 이식한 후 반대편 폐를 연이어 이식한 경우에 이식한 폐만 전체 백막착탈의 부담이 가중되는 것이 아니고 실험모드에서는 인공 심폐호흡기 사용해야 하고 이에 따른 합병증은 결국 원래 실험목적을 달성하기 어렵게 된다. 특히 체험 실험모델로 할 경우에 폐의 실험적 증가에 따른 Hering-Breuer reflex소실로 매파입상 사가호흡이 어려워 실험 결과 실험시지 속속적인 추적관찰을 위한 실험에서는 부적당하다고 한다28).

최근 국내에도 페이지에 대한 관심이 집중되고 있으나 아직의 논사가 인정되지 않아 공여받기 수급의 제한이 일관되지 않아 공여받기 특히 공여받기의 부족은 여전히 있다고 할 수 있는 실정이다. 이에 더욱더 공여가 되는 보존에 관한 실험적 연구의 시도는 매우 바람직한 일이라 사료되며 현재 국내에서도 이주언 등29), 송창현 등30) 및 박창관 등30)은 페이지식제에 많은 관심과 실적을 가지고 있으며 연구자 속한 의 과학연구소에서는 흉부외과를 중심으로 하는 내과, 마취과, 임상병리학, 진단방사선학, 핵의학, 생리학, 해부병리학 등 여러 관련 부서에서 공동의 노력으로 페이지식에서에 관련된 특히 폐보존에 관련된 연구들이 시행되고 있으며 본 연구와 이어 지는 연구로서 긍정 가부양응의 조직 전반을 위한 핵의학 및 고생상 콜란진사태고생층의 역할(Fig. 8, 9)과 폐보존의 효과와 관련된 various의 scanning 전자현미경적 형태학의연구(Fig. 11, 12) 및 연속 양축 페이지식을 이용한 이식체기능의 평가 등에 제작하고 있다.

최근 Wada 등31)은 4.1% trehalose, hydroxyethyl starch 및 gluconate를 함유한 저갈륨 세포외액체 보존액 ET-Kyoto(ET-K)용액으로 20시간 보존에 이어 용액에 buffer농축을 중전시거나 갈륨의 성분을 변화시키는 소위 modified ET-Kyoto용액을 만들어 48시간 개의 폐보존효과를 평가하였다. 결과로서 buffer농축의 증가는 보존에 있어 않고 44 mM/g가지의 갈륨농도에서는 페도메들 내피세포의 심한 변형을 초래하지는 않았다고 하였다. 이것은 케이 허혈뇌보존 상태에서 혈기능 대사의 l('=')생산이 세포의 산성증증증에

이르게 하기 때문에 phosphate 혹은 bicarbonate가 buffer를 증가한 요소가 된다. 반면에 페도의 산소소비호기상태에서의 폐기능은 buffer농축에 따른 결과가 증가한 요소를 고려하여 나타나고 있으며, 그리고 갈 릭도의 증가가 20 mM/g의 식소가 농축된 경우에서 폐보존용액은 buffer농축을 높이 주는 것이 이론적으로 유리하다고 되어 있다. 그리고 갈 릭도의 농축도 20 mM/g의 음극성에 높고 주사 전자현미경조직학은 실험실내의 보존의 단락이 둔 하였다. 반면 본 연구에서도 CaO와 폐혈관로두용의 상관이 있었다. 그러나 아직도 갈 릭도의 적정 농도의 결정을 위하여 더욱 많은 연구 노력이 필요하다고 여겨지고 있습니다. 이에 이식에 이르는 대상의 전반적으로 실험실에서 이상적인 실험 모델로서 연속 양축 페이지식(sequential bilateral lung transplantation)의 수기 및 숨 후에 시험한 지리적에서 생존율을 높 이는 것이 발견된 실험연구가 될 것으로 사료된다.

결론

LPDG용액을 이용한 20시간 이상 페도체 효과를 위한 이식실험에서 다음과 같은 결론을 얻었다.

1) 폐혈관용액은 재판류에 따른 점차 증가되었으며 재판 루 1시간에는 MEC용액에 유의하게 더 증가되었고 (p<0.05) 그 후 점차 회복되다가 재판류 7일까지 두 용액 모두 점차 상승되었다.

2) 백막착탈은 재판류에 따라 감소되었다가 재판류 2시간까지 LPG용액은 조금씩 감소되었다 MEC용액과는 유의한 차이를 보였다(p<0.05).

3) 별리조직검사는 LPDG용액을 사용한 군에서는 미만성으로 내피세포의 충혈과 불균일한 배열을 보인 반면 MEC 용액을 사용한 군에서는 비교적 경정한 손상을 보인 부위에 서 취한 변형으로 보인 부위가 다양한 형태학적 변화와 내피세포의 불균일한 물질은 LPDG용액보다 심한 양상을 보였다.

두 용액 모두에서 재판류에 따른 폐기능은 급격히 감소하였으나 2시간까지 LPDG용액은 비교적 MEC용액보다 나은 회복을 보였고 숨 후 3일, 7일까지 관찰에서는 두 용액 모두에서 폐기능의 점차 심화를 보였다. 따라서 LPDG용액은 허혈-재판류손상의 방지 및 급성폐렴 등의 심각한 양상을 결정하는 가부 억제에 유의한 힘이 있다면 20시간 이상 안전한 폐보존의 가능성을 확인하였다.

참고 문헌

1. Hardesty RL, Aeba R, Armitage JM, Kormos RL, Griffith
연구배경: 페이식 분야에서 이식받아야 할 공여체의 부족은 많은 문제점으로 되어 있다. 따라서 이상적인 폐관류-보존액인 세포내액용액이나 세포외액용액의 개발을 위하여 안전하고 장기간의 페보존이 가능한 많은 동물실험 연구가 시행되어 왔고 있다. 연구자들은 세포외액용액인 LPGD용액을 이용하여 20시간 이상 페보존의 효과를 연구하기 위하여 대조군으로 세포내액용액인 modified Euro-Collins(MEC)용액을 사용하였다.

방법: 실험은 평균 20 Kg 이상의 한국산 잡종간 34마리를 구하여 17마리씩 공여체와 수용체로 압수 구분없이 나누어 LPGD용액군이 9례 MEC용액군이 8례로써 좌측 일측폐이식술을 시행하였다. 공여체의 보존은 10℃에서 20시간 이상 저장하였으며 각 폐관류-보존용액에 prostaglandinE1(PGE1)을 공여체식육에서 배양액을 통해 주입하였다. 이식폐기능의 평가는 이식폐의 재관류후 30분, 1시간, 2시간후 그리고 숨 후 3일째와 7일째 배양액 cutoff을 이용하여 혈액동적 검사와 동맥혈가스분석을 시행하였다. 또한 재관류 3시간후와 숨 후 3일, 7일째에 단순호흡 X-선 촬영, 전산화 흉부 단층촬영 및 99mTc폐관류 스캔을 실시하였다. 전 레에서 부검을 실시하여 병리조직학적 소견을 얻었으며 20시간 이상 페보존후에 각 용액별 전자현미경적 폐포구조와 폐동맥내피세포의 소견을 비교하여 보았다.

결과: 이식폐의 동맥혈가스분석에서 동맥혈산소분압은 두 용액 모두에서 재관류직후 현저히 감소되었으나 재관류 2시간까지 서서히 회복이 되었으며 이는 LPGD군에서 더 증가되었으나 동맥혈가스의 의미는 없었다. 재관류 1시간 후 MEC군이 LPGD군보다 폐관류동맥압이 상승하였고(р<0.05) 재관류 1시간과 2시간에서 LPGD군이 산소포화도가 더 높았다(р<0.05). 그리고 페관류조제호는 양군 모두 재관류 2시간까지는 감소되거나 큰 변화가 없었다. 3일째와 7일째 결과, 대조군 간에 유의적인 차이가 없었다. 전산화 흉부단층촬영에서 LPGD군이 MEC군보다 폐양성 재관류후와 숨 후 3일, 7일째에 비교적 나쁘게 나타났으며 재관류 스캔에서는 재관류후 3일, 7일째 및 7일째에 LPGD군이 대조군에 비해 유의적으로 높게 나왔으나 전반적으로 감소하였으며 동맥혈가스의 유의성이 없었다. 병리조직검사에서 양군 모두 82%에서 이식폐의 폐렴소견이 있었고 MEC군에서 84%에서 폐렴소견이 있었다. 그 중 5례는 이식폐의 부정소견을 보았으며 20시간 이상 페보존후 전자현미경검사에서 양군간에 경증의 폐동맥내피세포의 부종과 불균질한 투조가 관찰되었다. 내피상피의 불규칙한 투조는 MEC군에서 더 심하게 관찰되었다.

결론: 두 용액 모두에서 재관류관류 후 폐기능은 급격히 감소하였으나 2시간까지 LPGD용액은 MEC용액보다 비교적 나은 회복을 보였고 재관류 3일과 7일의 폐기능 평가에서 두 용액 모두에서 폐기능의 검사적 소견을 보였으며 이는 병리조직검사에서 보듯이 폐렴에 의한 외피면의 폐포구조의 변화가 관찰되며 따라서 LPGD용액은 허혈-재관류손상 방지 및 금성 폐렴 등 염증을 잘 관리한다면 20시간 이상 LPGD 용액의 안전한 페보존의 가능성을 얻을 수 있었다.

중심단어: 1. 페이식, 폐관류-보존액, 페보존