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Abstract

In this paper a new learning algorithm for curvature smoothing and improved generaliza-

tion for multi-layer neural networks is proposed. To enhance the generalization ability a con-

straint term of hidden neuron activations is added to the conventional output error, which

gives the curvature smoothing characteristics to multi-layer neural networks. When the total

cost consisted of the output error and hidden error is minimized by gradient-descent methods,

the additional descent term gives not only the Hebbian learning but also the synaptic weight

decay. Therefore it incorporates error back-propagation, Hebbian, and weight decay, and addi-

tional computational requirements to the standard error back-propagation is negligible. From

the computer simulation of the time series prediction with Santafe competition data it is

shown that the proposed learning algorithm gives much better generalization performance.

I . Introduction

Multi - layer neural networks have been suc-
cessfully used for complicated pattern classifi-
cation and function approximation problems.
The issue of generalization is usually addressed
by over constraining the neural network. A

lower bound on the number of training samples
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required for generalization by a feed - forward
network with fixed number of hidden units has
been asymptotically estimated using saturation
property of Vapnik’s and Chervonenkis'’s
growth function{1]. However, it is still open
problem to match a network's size and architec-
ture to a given training set for good network

generalization. It is necessary to compromise
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among the training data size, the underlying
problem complexity, and the network complexi-
ty[1]. While smaller networks are not capable
of representing the problems accurately, net-
works with too many synaptic weights actually
suffer from overfitting and result in poor gener-
alization for test data. Although many efforts
have been reported to avoid the overfitting,
they usually achieve the goal by reducing the
network complexity with pruning algorithms
[2], and are not explicitly designed for better
generalization performance. Popular algo-
rithms for synaptic weight elimination[3],
weight decay[4 — 6], and weight sharing[7 -
11] all belong to this approach.

On the other hand the problem complexity may
be increased to avoid overfitting. Noise injec-
tion on training data[12] and additional cost
definitions[13 - 15] belong to this approach.
The additional cost definitions should be care-
fully designed to describe appropriate additional
requirements of the problem. For many applica-
tions the neural network classifier or function
approximator is proceeded by pre — processors
and followed by post — processors, and it is nat-
ural to incorporate these pre —and post - pro-
cessing functions in the neural networks itself.
Low input - to — output sensitivity and curva-
ture smoothing are good examples. Recently we
reported a new hybrid learning algorithm
based on the hidden — neuron activations[16,
17], which successfully reduced the input -
to — output sensitivity for improved generaliza-
tion and fault - tolerance ability. Only slight
modifications are needed for the conventional
error back - propagation algorithm, and addition-
al computational requirements are almost neg-
ligible.

In this paper, a better cost function with cur-
vature smoothing is developed for function appro-

ximator with good generalization characteristic
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and tested with the time series prediction prob-
lem using Santafe competition data[18]. A hybrid
learning algorithm with weight decay constraint
is naturally derived by the steepest descent algo-
rithm for minimizing the proposed cost function
without much increasing of computation require-
ment. Additional cost definitions at hidden - layer
neurons is explained in the next section, and
followed by computer simulation results with
the time series prediction of Santafe prediction
of Santafe competition data. Conclusions and

discussions will be made in section IV.

I . Additional Cost Definitions at
Hidden - Layer Neurons

For many supervised learning algorithms the
cost function is defined as a sum - of - squares
of output errors. By minimizing this cost func-
tion the neural network learns input - to — out-
put mapping defined by training data. In addi-
tion to this simple mapping we would like to
take into account of derivatives of the mapping
function. The first derivatives are sensitivities
of the mapping and give better robustness and
fault - tolerance ability of pattern classification
problem[16,17]. In this paper, the second deri-
vatives of mapping functions are introduced to
get the better generalization performance of
time series prediction problem, which are relat-
ed to the frequency.

For many prediction applications one is not
interested in detail high - frequency behavior
of the output values, and curvature smoothing
or low - pass filtering is usually followed at the
post — processing stage. However, this low — pass
filter characteristics may also be incorporated
in the neural network as additional cost function.

The frequency square of a signal y(x) is regard-
ed as a negative ratio of its second derivatives

to itself, i.e. —(d%/dx*)/y. By applying chain rule
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for the feed - forward neural network, one

obtains the second derivatives as

dzyl

dx?y
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where one hidden ~ layer networks with linear
output are considered for simplicity, x, and y,
denote and £ th element of the input vector and
i th element of the output vector, respectively,
and W(1); is synaptic interconnection for the /
th layer. the f is derivative of Sigmoid function
fand f= +f is used for the bipolar hyperbolic
tangent Sigmoid function. The hat represents
post — synaptic neural activation before Sig-
moid squashing. By comparing Eq.(1) with y,=
ZW‘Z‘Uﬂﬁ,), one way notice that /‘”(fzj)(W“_‘,k)B is
rélated to the frequency square.

Instead of the standard cost function a new
cost function is defined as

1 Ny

E:E0+th=m lZ(ti—yl)2+th (2)
where E, is the normalized output error and
the new hidden layer penalty term is defined as

By =~ TRh) DW= SRk, (3)
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where e;= );(W“’jk)z/Q represents the synaptic
weight energy for the first layer. It is worth
noting that both the f and e; are positive. Here
N, is the number of hidden layer neurons and y
represents relative significance of the hidden
layer error over the output error. Using the
steepest — descent algorithm with the cost func-
tion in Eq.(2) the weight update for the layer

from now becomes

AW = Tlﬂ;lj B 2;5:Wmij+ Nxphe - W1,

(4)

where n is learning rate. The first term in the

brackets denotes the usual back - propagated
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error. The second term represents new gradient
from the additional cost term and is composed
of the Hebbian learning term and weight decay
term. Egs.(2) and (4) show one example to incor-
porate frequency in neural networks.

The beauty of the proposed learning algorithm
may reside in its simpleness and straightfor-
ward easy interpretation in terms of frequency.
It is worth noting that the second term in
Eq.(4) is the only modification from the stan-
dard back - propagation algorithm, and addition-
al computation requirements are almost negli-
gible.

Il . Time Series Prediction with the
Proposed Learning Algorithm

The performance of our proposed learning
algorithm is illustrated with the time series
prediction of Santafe data set A which is the
chaotic intensity pulsations of an NH3 laser.
Only 1,000 samples of the sequence were pro-
vided, and the goal was to predict the next 100
samples. In this case, a single step prediction is
used for comparison of generalization perfor-
mance between the multi - layer neural net-
work with proposed learning algorithm and
that with standard error back propagation
learning algorithm[18]. We use two layer
feed — forward neural network with 25 inputs,
40 hidden neurons, and 1 output.

Fig. 1 shows the 1100 data points of the chaot-
ic laser data. The 100 single step prediction
achieved using standard multi - layer neural
network is shown Fig. 2, and the proposed
method with the constant hidden constraint
value yis shown in Fig. 3. Fig. 4 is the case that
the yis changed during the learning process from
large initial value(y=0.1) to small value(y=
0.00001). As shown in Figs. 2, 3, and 4, the over-
fitting of the prediction data is much avoided
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Chaotic intensity pulsaticns in a single-made tar infrared NH3 laser
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Fig. 1 Time points of chaotic laser data.
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Fig. 3 Single step time series prediction using the
proposed learning algorithm.

Pradiction results of NH3 laser by standard MLP
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Fig. 2 Single step time series prediction using the
standard error back propagation learning
algorithm.

Bingle step prediction results of NH3 laser by . "LP with gamma({1CE-1 --> 10E-5)
380 T T T T T T T T
Predicted output —e—
Desired output ---~ |

2 @
Q (=3
S Y

50 \ L Y
0 10 20 30 40 50
time

Fig. 4 Single step time series prediction using the
proposed learning algorithm with gamma =
0.1 — 0.00001.

Table 1. Normalized sum squared error measures(1000 - 1100 point single step prediction).

Standard algonthm Proposed algorlthmlgamma 10E 5

0.0223

0 0365

(\Proposedalgonthm(gamma l()E 1->10E - 5)l

Weigend

0.0172 0.0198

I

by the proposed learning algorithm. In Table 1
normalized mean square errorstNMSEs) of the
predicted results are compared with other
results[18].

IV. Conclusion

In this paper a hybrid learning algorithm
with back - propagation, Hebbian, and weight
decay is proposed for curvature smoothing and
low - pass filtering. This additional functions
are coded as additional weak constraint into the

0oy

cost function, and the gradient - descent learn-
ing algorithm incorporates both the error
back - propagation and Hebbian learning rules,
and weight decay is also naturally incorporat-
ed. Only slight modification is required for the
standard back -~ propagation code, and addi-
tional computation requirements are almost
negligible. The increased generalization perfor-
mance is demonstrated with the time series
prediction using Santafe competition data set
A. A new method for adaptively changing the
hidden constraint term yis necessary and under
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investigation.
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