국내 식물시료에서 분리한 Bacillus thuringiensis 균주의 다양성

  • 박승환 (한국과학기술연구원 생명공학연구소 응용미생물연구부) ;
  • 구본탁 (한국과학기술연구원 생명공학연구소 응용미생물연구부) ;
  • 신병식 (한국과학기술연구원 생명공학연구소 응용미생물연구부) ;
  • 최수근 (한국과학기술연구원 생명공학연구소 응용미생물연구부) ;
  • 정영미 (한국과학기술연구원 생명공학연구소 응용미생물연구부) ;
  • 반재구 (한국과학기술연구원 생명공학연구소 생물공정연구부) ;
  • 김정일 (한국과학기술연구원 생명공학연구소 응용미생물연구부)
  • Published : 1997.04.01

Abstract

We collected 3,237 plant samples, mainly leaves of various trees, from many provinces in Korea and a total of 1,925 Bacillus thuringiensis isolates were obtained and characterized. The isolates were characterized in terms of crystal morphology, PAGE pattern of the toxin proteins, plasmids pattern, biochemical characteristics, and bioassay. The microscopic observation showed that 49.1% of the isolates have bipyramidal shape crystals, 7.1% of spherical shape crystals, 1.4% of rhomboidal shape crystals, and others have small or amorphous inclusions. The insecticidal activities of the spore-crystal mixtures of isolates were tested against Plutella xylostella, Bombyx mori, Culex pipiens, and Agelastica coerulea. Bioassay showed that 51.3% of the isolates were shown to be active; lepidopteran-specific (44.8%), dipteran-specific(4.9%) and coleopteran-specific (1.6%). The remainder(48.8%) did not show any activity against the insects we tested. Interestingly though, some of these non-active isolates were shown to have bipyramidal crystals. By serotyping 22 isolates of our collection, we found that there are various kind of subspecies such as aizawai, amagiens, canadensis, darmstadiensis, galleriae, finitimus, kurstaki, morrisoni and neoleonensis, and three isolates have been classified into a new serotype, H49, and one of them, the type strain, named subsp. muju. From this study it was found that phylloplane is a good source for the isolation of Bacillius thuringiensis, and Bacillus thuringiensis is distributed widely in Korea.

Keywords

References

  1. Dainihon Sanshi Kaiho v.114 On a kind of severe flacherie(sotto disease) Ishiwata, S.
  2. Z. Gesamte Getreidewesen (Berlin) v.3 Uber die Schlaffsucht der Mehlmottenraupe Berliner, E.
  3. Entomophaga, Mem, Hors. Ser. v.2 Kurstak, E.
  4. J. Inverte. Pathol. v.15 Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var. alesti Dulmage, H. T.
  5. Mosq. News v.37 A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univattatus, Aedes aegypti and Culex pipiens Goldberg, L. H.;J. Margalit
  6. Pathotyp. Z. Ang. Entomol. v.96 Bacillus thuringiensis var. tenebrionis: ein neuer, genen ber Larven von Coleopteren wirksamer Pathotyp Krieg, A.;A. M. Huger;G. A. Langenbruch;W. Schnetter
  7. Bio/Technol. v.10 Bacillus thuringiensis: insects and beyond Feitelson, J. S.;J. Payne;L. Kim
  8. Proc. Natl. Acad. Sci. USA v.88 Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor Ferre, J.;M. D. Real;J. Van Rie;S. Jansens;M. Peferoen
  9. Annu. Rev. Entomol. v.39 Evolution of resistance to Bacillus thuringiensis Tabashnik, B. E.
  10. J. Econ. Entomol. v.83 Field development of resistance to Bacillus thuringiensis in diamondback moth(Lepidopterra: Plutellidae) Tabashnik, B. E.;N. L. Cushing;N. Finson;M. W. Johnson
  11. Appl. Environ. Microbiol. v.53 Selective process for efficient isolation of soil Bacillus spp Travers, R. S.;P. A. W. Martin;C. F. Reichelderfer
  12. Can. J. Microbiol. v.27 Bacillus thuringiensis distribution in soils of the United states Delucca, A. J.;J. G. Simonson;A. D. Larson
  13. Microbial and viral pesticides Distribution of Bacillus thuringiensis in nature Dulmage, H. T.;K. Aizawa;E. Kurstak(ed.)
  14. Appl. Environ. Microbiol. v.55 Worldwide abundance and distribution of Bacillus thuringiensis isolates Martin, P. A. W.;R. S. Travers
  15. J. Appl. Bacterial v.67 Distribution of the four flagellar(H) antigenic subspecies of Bacillus thuringiensis H serotype 3 in Japan Ohba, M.;K. Aizawa
  16. Appl. Environ. Microbiol. v.57 The phylloplane as a source of Bacillus thuringiensis varients Smith, R. A.;G. A. Couche
  17. Plasmid v.1 A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria Eckhardt, T.
  18. Plasmid v.5 Correlation between specific plasmids and δ-endotoxin production in Bacillus thuringiensis Gonzalez, J. M.;H. T. Dulmage;B. C. Carlton
  19. Anal. Biochem. v.230 Screening of nested deletion mutants for DNA sequencing by direct electrophoresis of bacterial cultures Choi, S. K.;B. T. Koo;B. S. Shin;S. H. Park;J. I. Kim
  20. J. Appl. Bacteriol. v.69 A simple haemolytic method for quantitation of the delta endotoxin of Bacillus thuringiensis subsp. israelensis from crude samples Majumdar, M. K.;D. P. Sikdar;A. B. Sarma;S. K. Majumdar
  21. Manual of methods for microbiology Gerhardt, P.;R. G. Murray;R. N. Costilow;E. W. Nester;W. A. Wood;N. R. Krieg;G. B. Phillips
  22. Microbial control of pests and plant diseases 1970-1980 Identification of H-serotypes of Bacillus thuringiensis De Barjac, H.
  23. Ann. Rev. Microbiol. v.40 The molecular biology of parasporal crystal body formation in Baciullus thuringiensis Whiteley, H. R.;H. E. Schnepf
  24. FEMS Microbiol. Lett. v.60 Transformation and expression of a cloned δ-endotoxin gene in Bacillus thuringiensis Lereclus, D.;O. Arantes;J. Chaufaux;M.-M. Lecadet