Phase Transformation of 2 Components(CaO-, $Y_2O_3$-, MgO-$ZrO_2$) and 3 Components(MgO-$ZrO_2-Al_2O_3)$ Zirconia by X-ray Diffraction and Raman Spectroscopy

X-선회절과 Raman 분광분석을 이용한 2성분계(CaO-, $Y_2O_3$-, MgO-$ZrO_2$) 및 3성분계(MgO-$ZrO_2-Al_2O_3)$ Zirconia의 상전이연구

  • 은희태 (인하대학교 무기재료공학과, 소재연구소) ;
  • 황진명 (인하대학교 무기재료공학과, 소재연구소)
  • Published : 1997.02.01

Abstract

ZrO2 phase transformations depending on the type and amount of dopants and the sintering temperatures were studied for the 2 components (CaO-, Y2O3-, MgO-ZrO2) and the 3 components(MgO-ZrO2-Al2O3)ZrO2 powder by X-ray diffraction and Raman spectroscopy. In the CaO- and Y2O3-ZrO2 systems, as the CaO and Y2O3 contents increased to 6~15mol% and 3~15mol% respectively, we were not able to identify between tetragonal and cubic in the X-ray diffraction patterns. On the other hand, all Raman modes shifted to lower wavenumbers, decreasing in intensity and the number of bands, markedly. These phenomena were caused by tetragonallongrightarrowcubic phase transformation and interpreted by the breakdown of the wave vector selection rule(k=0) and the structural disorder associated with the formation of oxygen sublattice which was caused by the substitution between Zr4+ ion and Ca2+ or Y3+ ion in ZrO2 matrix. The monoclinic to cubic phase transformation occurred in 10mol% MgO-ZrO2 system. As the Al2O3 content increased from 0 to 20mol% in the MgO-ZrO2-Al2O3 systems, cubic phase transformed to monoclinic phase, this is because the MgO didn't play a role in a stabilizer because of the formation of the spinel(MgAl2O4) by the reaction between MgO and Al2O3, Also, the ZrO2 phase transformation was explained by the change of it's lattice parameters depending on the type and amount of dopants. Namely, as the amount of dopant increased to 10~13mol%, the axial ra-tio c/a came close to unity with increasing the lattice parameter a and decreasing the lattice parameter c. At that time, the tetragonallongrightarrowcubic phase transformation occurred.

2성분계(CaO-, Y2O3-, MgO-ZrO2) 및 3성분계(MgO-ZrO2-Al2O3)ZrO2분말의 안정화제 종류, 첨가량 및 열처리온도 변화에 따른 ZrO2의 상전이를 X-선 회절과 Raman분광법으로 연구하였다. CaO-, 및 Y2O3-ZrO2계에서 CaO와 Y2O3의 첨가량이 각각 6~15mol% 및 3~15mol%로 증가에 따른 정방정상에서의 입방정상으로의 상전이를 X-선회절 pattern으로는 판별하기 어려웠으나, Raman spectra에서는 모든 Raman band가 저파수쪽으로 이동하고 band의 수 및 그 세기가 현저히 감소함을 관찰할 수 있었다. 이것은 정방정$\longrightarrow$입방정의 상전이가 발생한 것으로 ZrO2 격자내에서 Zr4+ 이온과 Ca2+ 혹은 Y3+이온의 치환에 의해 산소이온의 빈자리 생성으로 인한 구조적 불규칙성과 선택규칙(k=0)의 파괴에 기인한 것으로 해석된다. MgO의 경우에는 10mol%에서 단사정에서 입방정으로 상전이가 발생하였다. MgO-ZrO2-Al2O3계에서는 Al2O3의 첨가에 의해 입방정$\longrightarrow$단사정의 상전이가 발생하는데 이것은 MgO와 Al2O3의 반응에 의해 spinel(MgAl2O4)의 형성으로 인하여 MgO가 충분히 안정화제로서의 역할을 하지 못하기 때문으로 판단된다. 또한, 안정화제의 종류와 첨가량 변화에 따른 ZrO2의 상전이를 ZrO2의 격자상수값의 변화와 관련하여 설명할 수 있는데, 즉, 안정화제의 첨가량이 증가할수록 격자상수 a값은 증가하고 c값은 감소하여 10~13mol%사이에서는 c/a의 축비가 1에 근접하고, 따라서 정방정$\longrightarrow$입방정의 상전이가 진행됨을 알 수 있었다.

Keywords

References

  1. Advances in Ceramics;Science and Technology of ZirconiaⅠ v.3 Zirconia-an Overview E. C. Subbarao;A. H. Heuer(ed.);L. W. Hobbs(ed.)
  2. Zirconia and Zirconia Ceramics R. Stevens(ed.)
  3. Phys. Stat. Sol.(a) v.71 no.313 Raman Spectroscopic Studies of the Polymorphism in ZrO₂at High Pressures H Arashi;M. Ishigame
  4. Acta Crystallogr. v.12 no.5 Crystal Structure of Baddeleyite(Monoclinic ZrO₂) J. D. McCullough;K. N Trueblood
  5. Acta Crystallogr. v.15 no.11 Crystal Structure of Tetragonal ZrO₂ G. Teufer
  6. Nature v.258 no.25 Ceramic Steel? R. C. Garvie;R. H. Hannink;R. T. Pascoe
  7. Ceramics International v.8 no.2 Synthesis of Alumina and Zirconia Fibers P. A. Vityaz;I. L. Fyodorova;I. N. Yermolenko;T. M. Ulyanova
  8. J. Mater. Sci. v.23 no.1539 Preparation and Thermal Evolution of Sol-Gel Derived Transparent ZrO₂and MgO-ZrO₂Gel Monolith P. Kundu;D. Pal;S. Sen
  9. J. Am. Ceram. Soc. v.54 no.5 Infrared and Raman Spectra of Zirconia Polymorphs C. M. Phillippi;K. S. Mazdiyasni
  10. J. Am. Ceram. Soc. v.60 no.7;8 Temperature Dependence of the Raman Spectra of ZrO₂ M. Ishigame;T. Sakurai
  11. J. Korean Ceram. Soc. v.31 no.10 Preparation of MgO-ZrO₂Fibers by Sol-Gel Method and Their Characterization C. M. Whang;H. T. Eun
  12. J. Mater Res. v.11 no.6 Synthesis of Metastable Tetragonal(t') Zirconia-Calcia Solid Solution by Pyrolysis of Organic Precursors and Coprecipitation Route M. Yashima;M. Kakihara;K. Ishii;Y. Ikuma;M. Yoshimura
  13. J. Am. Ceram. Soc. v.76 no.8 Raman Spectra of Tetragonal Zirconia Solid Solutions D. J. Kim;H. J. Jung;I. S. Yang
  14. J. Phys. Chem. Solids v.34 no.1873 Raman Scattering from $Ca_xZr_{1-x}O_{2-x}□_x$, A System with Massive Point Defects V. G Keramidas;W. B. White
  15. J. Phys. Chem. Solids v.42 no.513 Structural Disorder and Phase Transitions in ZrO₂-Y₂O₃System A. Feinberg;C. H. Perry
  16. J. Appl. Phys. v.74 no.1;2 Determination of Cubic-Tetragonal Phase Boundary in $Zr_{1-x}Y_xO_{\frac{2-x}{2}} Solid Solutions by Raman Spectroscopy M. Yashima;K. Ohtake;M. Arashi;M. Kakihana;M. Yoshimura
  17. Phys. Rev. B v.51 no.1 Temperature Dependence of Raman Scattering in Stabilized Zirconia J. Cai;C. Raptis;Y S. Raptis;E. Anastassakis
  18. J. Am. Ceram. Soc. v.70 no.10 High-Pressure Phase Transitions in Zirconia and Yttria-Doped Zirconia B. Alzyab;C. H. Perry;R. P. Ingel
  19. Advances in Ceramics;Science and Technology of Zirconia Ⅱ v.12 Diffusion Processes and Solid-State Reactions in the Systems Al₂O₃-ZrO₂(Stabilizing Oxide)(Y₂O₃, CaO, MgO) T. Kosmac;D Kolar;M. Trontelj;N. Claussen(ed.);M. Ruhle(ed.);A.H. Heuer(ed.)
  20. Spectrochimica Acta. v.23A no.985 Interpretation of the Vibrational Spectra of Spinels W. B. White;B. A. Deangelis
  21. Korean J. Ceram. v.2 no.2 Spectroscopic and Microstructural Analysis of Phase Transformation of Mg-PSZ/Al₂O₃Fibers Prepared by Sol-Gel Method H. T. Eun;C. H. Whang