Preparation of Ferroelectric $\textrm{SrBi}_{2}\textrm{Ta}_{2}\textrm{O}_{9}$ Thin Films Deposited by Plasma-enhanced Metalorganic Chemical Vapor Deposition

플라즈마를 이용한 유기금속 화학증착법에 의한 강 유전체 $\textrm{SrBi}_{2}\textrm{Ta}_{2}\textrm{O}_{9}$ 박막의 제조

  • Seong, Nak-Jin (Dept. of Materials Engineering, Chungnam National University) ;
  • Kim, Nam-Gyeong (Dept. of Materials Engineering, Chungnam National University) ;
  • Yun, Sun-Gil (Dept. of Materials Engineering, Chungnam National University)
  • Published : 1997.02.01

Abstract

$SrBi_{2}Ta_{2}O_{9}(SBT)$ thin films wcre prepared on $Pt/Ti/SiO_{2}/Si$ suhsrrate by pL~snia-enhanced chemical vapor deposition. Sr and Ta huhhling temperatures were kept ,it $120^{\circ}C$ Iron1 X- ray tiiffriict!on. n~icrostruc~ure. and composjrional analysis of SH7' films, respectivels Hi I~ut~t~lmg tempcl.arure was varied SR'I' thin tilrns dcpositcd ar i3i buhbling temperature of $130^{\circ}C$ have dielccrric constanr of 150 anti dissipation factor of 0 02 at IOOkFic. I .eakagc wrrent density of films was ahour $1.0{\times}10^{-8}A/cm^2$ at 20kV/cm. 1.eakage current i11amcrc1istic.s of Sli'l' films nras c.ontrolled by I'oole Frcnkel emission Kenianent polariziit~on and mercivc field oi SR\ulcorner' films annealed at $550^{\circ}C$ were $9{\mu}C/cm^2$ and 70kV/cm, respectively.

플라즈마를 이용한 유기금속 화학증착법에 의해 $Pt/Ti/SiO_{2}/Si$기판위에 $SrBi_{2}Ta_{2}O_{9}(SBT)$박막이 제조되었다. X-ray회절패턴, 미세구조 및 조성분석으로부터 Sr과 Ta bubbling 온도는 $120^{\circ}C$로 고정되었으며 Bi bubbling온도가 변화되었다. Bi bubbling 온도 $130^{\circ}C$에서 얻어진 SBT 박막의 유전상수 및 유전손실은 100kHz에서 각각 150과 0.02이며 누설전류 밀도는 20kV/cm 에서 약 $1.0{\times}10^{-8}A/cm^2$이었다. 이 조건에서 얻어진 SBT박막의 누설전류 특성은 poole-Frenkel기구에 의해서 지배된다. $550^{\circ}C$에서 annealing된 SBT박막의 잔류분극($_{2}P_{r}$)은 $9{\mu}C/cm^2$이며 항전계는 70kV/cm이었다.

Keywords

References

  1. Science v.246 J.F.Scott;C.A.Araujo
  2. Ferroelectrics v.108 S.K.Dey;R.Zuleeg
  3. J. Vac. Sci. Technol. v.9 G.H.Haertling
  4. J. Appl. Phys. v.68 H.M.Duiker;P.D.Beale;J.F.Scott;C.A.Araujo;B.M.Melnick;J.D.Cuchiaro;I.D.McMillan
  5. Jpn. J. Appl. Phys. v.33 T.Mihara;H.Watanabe;C.A.Araujo
  6. Jpn. J. Appl. Phys. v.32 T.Mihara;H.Watanabe;C.A.Araujo
  7. Appl. Phys. Lett. v.68 no.5 H.N.Al-Shareef;D.Dimos;T.J.Voyle;W.L.Warren;B.A.Tuttle
  8. J. Appl. Phys. v.78 no.8 J.J.Lee;C.L.Thio;S.B.Desu
  9. Jpn. J. Appl. Phys. v.34 H.Tabata;H.Tanaka;T.Kawai
  10. Appl. Phys. Lett. v.67 no.4 R.Dat;J.K.Lee;O.Auciello;A.I.Kingon
  11. Jpn. J. Appl. Phys. v.34 T.Atsuki;N.Soyama;T.Yonezawa;K.Ogi
  12. Jpn. J. Appl. Phys. v.34 H.Watanabe;T.Mihara;H.Yoshimori;C.A.Paz de Araujo
  13. Appl. Phys. Lett. v.68 no.5 T.LI;Y.Zhu;S.B.Desu;C.H.Peng;M.Nagata
  14. Physics of Semiconductor Devices S.M.Sze