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Motion Control Design of Constrained Mechanical Systems
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ABSTRACT
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. INTRODUCTION mechanical systems with nonholonomic con-

straints is investigated somewhat recently and

Interests on the control of mechanical systems relatively small number of papers are found in lit-

with kinematic constraints are increasing recent- erature®®®. Furthermore, they usually deals
ly. The constraints in the category encompasses with some specific examples.

usually holonomic and nonholonomic constraints. Traditionally. Lagrangian mechanics is adapted

Numerous papers have been published on the for the modeling of mechanical systems with

control of mechanical systems with holonomic holonimic or nonholonomic constraints. It requires

constraints’®®_  On the other hand, control of the use of Lagrangian multipliers which in turn
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means force measurement when one needs to
feedback the Lagrangian multipliers. Tt becomes
usually a source of uncertainty and is desirable to
avoid it in the case of motion control.

Udwadia and Kalaba™ proposed a new method
which deals general equations of motion for con-
strained discrete dynamic systems. Explicit equa-
tions of motion and generalized force of constraint
can be obtained for the system with constraints of
the form A(g,4.1)§ = b(g,4.t) where A is a known
mXxn matrix, b is a known m vector, and ¢ is n
generalized coordinates, It includes, among oth-
ers, the usual holonomic and nonholonomic con-
straints.

In this paper, the Udwadia and Kalaba's equa-
tion is modified for the motion control design of
constrained mechanical systems. In Section II,
the Udwadia and Kalaba’s equation is summa-
rized briefly. The equation is modified in Section
III for the motion control design of constrained
mechanical systems. New dynamics of the con-
strained mechanical system and new input matrix
are introduced. Two examples from literature are
simulated in Section [V for verification of the use
of Udwadia and Kalaba's equation for mechanical
systems with nonholonomic constraints. Section V
concludes this paper with concluding remarks.

Il. BACKGROUND MATERIAL

Udwadia and Kalaba™ proposed a novel method
which yields the explicit general equations of
motion for constrained discrete dynamic systems.
The method can handle many kinds of constraints
including holonomic and nonholonomic con-
straints. Main results of the method is briefly
reviewed in this section for later use.

The equations of motion of an unconstrained
discrete dynamic system can be represented as

M(q.0)4 = Aq,4:1) 4y

where 9€R"is the generalized coordinates,
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. d . d
q= E;q, g= —Eq, the X n matrix M jS symietric

and positive definite, and n-vector Q is the portion
of the system that is not directly related to-the
acceleration ¢

Suppose that the system is subjected to the fol-
lowing constraints,

2

where A is a known mXn constraint matrix and
b is a known m-vector. It can be seen that

A(q,é,f)é = b(q,49,t)

(2)includes holonomic, nonholonomic, and many
other kinds of constraints.

The explicit equations of motion of a discrete
dynamic system (1) under (2) can be written as

M(g.1)§ = Qg9+ Q. (3:4:1) 3)

where n-vector @.(4,9:?) represents the general-
ized constraint forces.

The first main result of Udwadia and Kalaba
is the derivation'of the explicit equations of

n

motion under constraints (2) as

Mij=Q+K(b—AM™Q) (4)

+

where the nxm-matrix K(@gH=M"(AM"")
and where is M"?a unique positive definite
square root of a positive definite matrix M and
"+’ denotes the Moore-Penrose generalized
inverse (see Penroge®).

The second main result is the' derivation of the
explicit equations for the generalized constraint
forces as

0.(g:4.t) = K(b— AM™'Q). ®)

It is worth to note that equations (4) and (5)
are derived independent to any specific problem.

fll. A NEW MODEL FOR MOTION CONTROL OF
CONSTRAINED MECHANICAL SYSTEMS

In this section. a new modeling method for



motion control of constrained mechanical systems
is derived using the Udwadia-Kalaba approach. The
constraints can be holonomic, nonholonomic, and
many other forms even nonlinear in 9.9 and 1.

Consider a mechanical system to be controlled
whose model is represented as

(6)

where n-vector 7 is the external forcing term.
Suppose that the system is under the constraint

fg.4.0=0 7

where f():R*XR"XR— R" js agsumed to be
¢! (i.e., differentiable).

The control problem is to find , which may be
dependent on 99 and t, such that one may
achieve a given task while observing the con-
straint for all ?21%,.% is the initial time. The
constrained mechanical system (6) and (7) can be
rewritten like the form of (1) and (2) in order to
use the Udwadia-Kalaba approach. First, the
unconstrained equations of motion (6) can be
rewritten as

M(g:0)g +G(g:9:1) =7

M(q,t)4 =7-G(q.4.0). (&
Comparison of (1} and (8) gives
Q(Qaéat)=T—G(Qa‘?at)- (9)

Secondly, the constraint (7) can be represented
like the form of (2) by differentiating it with
respect to t. Differentiation of f(¢.4.#)in (7) with
respect to t yields

& _Fdg, Fdq &

dt dgdt dgdr o 10
or

o _F, F:. I

AR YR AT g 0 an

Therefore equations (2), (7), and (11) give
: & . . o
== b(g,q,t)=—qg——. 1

A(g.4,1) % and b(q,4.t) aqq o (12)
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Note that the derivatives such that E are to

be interpreted as vector forms since the dimen-
sions of f.9 and ¢ can be more than one. So, a
mechanical system in (6) which is to be controlled
under the constraints (7) is represented like
equations (1) and (2) in the Udwadia-Kalaba
approach through (8) and (12).

Application of (4) to the mechanical system
with (8) and (12) yields

Mi=t-G+M"*C'b-AM"'(z-G))  (13)

where (= AM?20f course, the existence of
M is assumed in the approach.
Equation (13) can be rearranged as

Mi+G-M"C*(b+AM™'G)

=(I-M"*C"AM™)z. (14)

The left-hand-side of (14) is the "new” dynamics
of the constrained mechanical system and the
right-hand-side is the control with "new” input
matrix. Usually, the rank of I—M"*C*AM™ is
lower than that of / and the system is "underactu-
ated”. It means that the system can be feedback
stabilized to an equilibrium manifold with smooth
feedback in this case. It is pointed out in Bloch
and McClamroch®, Campion ef al.®, Bloch efal.®,
and Su and Stepanenko®.

It is worth to note that (14) is decoupled with
the generalized constraint forces. It means that
the motion of a mechanical system under con-
straints can be controlled using only position and
velocity feedback, i.e.. it does not need force sens-
ing.

Application of (5) to the mechanical system
with (8) and (12) gives

Q. =M"*C*'(b+ AM™'G)-M"*C*AM 7. (15)
Equation (15) gives the possibility of the control
of the generalized constraint forces if desired.

The new modeling method is suitable for motion
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control since the constraints are embedded into
the “new” dynamic equation. The validity of using
the Udwadia—Kalaba approach for motion control
purpose is demonstrated in the following section
with some simulated examples.

IV. SIMULATED EXAMPLES

Validity and efficiency of using the Udwadia-
Kalaba approach to the control of mechanical sys-
tem with nonholonomic constraint is demonstrat-
ed in the example 1.

Example 1. Equations of motion of a wheeled
robot moving on a horizontal plane in Su and
Stepanenko® with [ = pP=1are adopted in this
example, where P is the radius of the wheels and
2L ig the length of the axis of the front wheels. It
is constituted by a rigid trolley equipped with
non-deformable wheels. The physical configura-
tion and derivation of the equations can be found
in Campion etal.® and d’Andrea-Novel et al."®.

The unconstrained equations of motion can be
expressed as

Mx = —(u; +u,)sin@

my = (u, + u, )cosd (16)

Ioé =i, — U,

where x and y are generalized coordinates which
represent the position of a reference point of the
robot, @ is a generalized coordinate for orientation
of the robot, m is the mass of the robot, I, is its
inertia with respect to a vertical axis which is
passing through the reference point, and ¥, and u,
are control inputs.
Comparison of (16) with (8) and (9) yields and

m0 0 —(u, +u,)sin@
M=|0m 0 |and Q=| (u +uy)cos@| (17)
0 0 I U —u,

The nonholonomic constraint is expressed as
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Xcos0 + ysin€ = 0. (18)

Differentiation of (18) with respect to t gives

jé

[cos® sin® 0] ¥ |= iBsin6— yBcosh. (19)
‘é
Comparison of (19) with (2) yields
A =[cos@ sin@ 0] and
b = 10sin0 — y0cosb). (20)

Substitution of (17) and (20) into (4) gives

m 0 0Oy —sinf® —sind Y
0 m Ofy|= cos€@ cosO [ul]
0 0 L]g I
cos8
+m|sin@ | (£0sind — yBcosh). (21)

0

Equation (21) represents a new equations of
motion where the nonholonomic constraint (18) is
embedded. When the outputs are chosen as
[y Q]T the governing equations of motion become

m O 1Yl [cos® cosfu
0 L6 |1 ~1]u
+ m[‘“g 9] (x6sin@ — yBcosh). (22)

If the control task is to drive »Y6.and @to
y=y=0=6=0,can choose ¥ and *as .

w] [cos@ cosd]" sin@| . . .
= -m (x85in@ — yBcos8)
U, 1 -1 0

—hy-bLy '
T O | AP LA L
-m@-m0|] 27 2
where [, . m;, and m, can be -determined to sat-
isfy desired performances. This results in

[m 0 5;_"'1)""12)"
0 I,)6| |-m6 -m0|

(23)

(24)
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Equation (24) assures that the control task can
be achieved.

A simulation is performed to the system (21)
using the control (23). System parameters and
initial conditions are the same as in Su and
Stepanenko® for comparison, i.e., m=05, I, =
0.5, x(0)=0, x(0)=0, y(0)=4, y0)=0, 8(0)=
45°and @(0) =0. Control parameters. ,4,m, and
myare chosen to be [, =m; =16 and I, =m, =8.

Position trajectory of y
35r
3
25
| =3
2 ol
] 2
[= %
-
1.5
1}
05
_ \ i .
0 05 1 15 2 25 3
time(sec.)
(a) Position trajectory of y
Velocity profile of y
0 T T
0 0:5 9 1.5 2 25 3

tire(sec.)

(b) Velocity profile of y
Fig. 1 Position and velocity evolution of ¥
Figure 1 and 2 show that the control task is

achieved satisfactorily. Much smoother and small-
er velocity profiles {in magnitude) than Su and
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45 v T
40
35¢
30 4
.§ 25}
S0t
&
15
10
5 3
0 A - .
0 05 1 15 2 25 3
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(2) Orientation trajectory of &
Velacity profile of orientation
0 , . -
1
4 . : — . .
2('J 05 1 15 2 25 3
tme(sec,)

() Velocity profile of 6

Fig. 2 Orientation and velocity evolution of 8

Stepanenko®

are obtained even though the posi-
tion and orientation trajectories are similar. Fig-
ure 3 shows the control profiles. Much smoother
and smaller controls can be observed also.

Figure 4 shows that the nonholonomic con~
straint is satisfied during the motion control.

Another simulated example is investigated for a
system with a constraint which is nonlinear in
generalized velocities. So far no other modeling
technique is able to address such constraint.

Example 2, Consider a simple planar Carte-
sian manipulator in McClamroch and Wang™. The
unconstrained equations of motion are expressed as
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(a) Control profile of u,
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(b) Control profile of u,
Fig. 3 Control profiles of ¥, and u,.
Evaluation of constrairt
4 . r v —
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3 +++
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-2 " :
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(+++: Xcos@,***: ysin®,xxx: #cos@+ysing)

Fig. 4 Evaluation of constraint xcos@+ ysiné

1 T
7 U,
where g, and ¢, are generalized coordinates and ¥,

and ¥, are control inputs.
Comparison of (25) with (8) and (9) yields

10 A
M= and Q= i (26)
01 U,
The constraint equation is given by
At +42 -1=0. V)

The constraint. after taking derivative with
respect to f twice, is

g ..
[84, q?.][‘.j‘} -84 — ;. (28)

2

Comparison of (28) with (2) yields
A= ts‘b 4,1 and b=-847 - g;. (29)

Substitution of (26) and (29) into (4) gives

[‘.jlj!_ 1 q; —-8q14, |
i)™ g4l | Sy W Jun

=Gy +d) |:8q] } (30)
6dgy +q; |4,

Apparently 'the numerator 6447 +¢7 is nonzero since
4gf + 93 —1=00r 6447 +1692 —16 = 0. Equation
(30) represents a new equations of motion where
the constraint (27) is embedded. Note that the
determinant of the “new” input matrix is zero,
i.e., rank=1. Therefore, the two control ¥, and u,
are dependent. We propose to choose

W=y =u 31)

The system is

|:%}= 1 % -89, u+—(8£)12+422)|:8‘11]
@] 64q]+4}|-8g,q, 64qt 64q; +4; |4,

(32)



Let the output variables, i.e., the manipulated
variable, be 91and 4;. The dynamics governing
the output are

HER Ao P
G 0 0jg, 64‘112+‘122 45_8‘11‘12

-2 -2
+[0 ]—(Sql +43)

. (33)
84, | 6447 +q;

Choose the control # to be the following:

644 +q. .
u= _Q,'M(_qul -kq,
4, — 84,9,

o Bl +dh } "
2 2y |
84,(649; +¢;)

The resulting closed-loop system is

A

The system can be made asymptotically stable by
any choice of & >0and k, >0. This renders
q;>0and g, > 0as t— os.

If the task is to drive and then the control law
needs to be modified:

(33)

84; +4;

641112+q§[ :
u=———= kg kg +——5"—-
4o T g+ )

3 +ha, + kqud}
4, — 39,4,

(36)

It is assumed that s and g are constants. It
shows that the problem in McClamroch and
Wang™ can be handled easily.

Now, suppose that the constraint is changed to

1., .,

(@ +ai)=1 (37)
This implies that the kinetic energy of the sys-
tem. even under the external control #, and u,
are kept constant. Note that the constraint is non-
linear in 41 and 92

Differentiation of the constraint with respect to
t yields

1,.... .
5(2‘11‘11 + 2‘1242) =0 (38)

160

or
]
4, qzl[..‘} 0. (39)
q,
Comparison of (39) with (2) yields
A=[g, g,] and b=0. 40)
Substitution of (26) and (40) into (4) gives
|:‘.I1:|=_1_ q§ -q19; |:u1 } (41)
el 2 _‘;1‘?2 5112 U,

Equation (41) represents a new equations of
motion where the nonlinear constraint (37) in
embedded. The two control u, and #, are depen-
dent since the input matrix is of rank 1. We pro-
pose to choose

U =Uy=U 42)
then (41) becomes

[‘?‘}1[ & ﬂ?ﬂ{u} @)

9, 2 ~hd: G u

Choose the output to be g, and g,. The governing
dynamics are

H 1 @
4> E(qg _4.142)’1

To drive 4 = dizand 4, = 4y, the control law is
chosen to be:

2 ..
_-f"(_k1(€h —qiy) k(g _‘Iu)) 45

93 — 4,

(44)

where k; >0 and &, >0 and 4y, and 4, are con-
stants. '

A simulation is performed with initial conditions
as 4,(0)=0,4,(0) =1.1832, ¢,(0)=0.and ¢,(0)=
0.7746. It means 4,(0)* =1.4 and ¢,(0)* =0.6in

order to satisfy the constraint %(qf +422)=1

The desired outputs are g,, =0.5and g,, = 0. Con-
trol parameters are chosen to be k,=16 and £,=8.
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Figure 5 shows that the control task is achieved
satisfactorily.

Fosition trajectory of g1

[+] 05 1 15 2 25 3
tirme{sec.)

(a) Position trajectory of ¢,

Velecity trajectory of g1

2 25 3

0 05 1

15
fire(sec.)
(b) Velocity profile of ¢,

Fig. 5 Position and velocity evolution of g,

Control prefile ef u
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BOF
&0
§ 40
w
20
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20} r
0 D:ﬁ 1 15 2 25 3
time(sec.)

Fig. 6 Control profile of #

161

Figure 6 shows the control profile of u.
PFigure 7 reveals that the constraint which is
nonlinear in 91 and 92is satisfied during the

09
08 *
*
07+ =
I
*
06
ty
o5 %
0.4*
e
0.3
0z

01 N
0 R 2R
0 05 1

e
time(sec.)y

(+++:-;-‘,’,***:-;—',’,xxx:-1-

5 (@ +ai))

Fig. 7 BEvaluation of constraint -%(qf +43)

motion control.
V. CONCLUDING REMARKS

It is investigated. that the new modeling tech-
nique using the Udwadia-Kalaba approach has
many advantages for the motion control of con-
strained mechanical systems. Control of mechani-
cal systems with many constraints including non-
holomic constraint can be modeled in a unified
way and results a new equations of motion where
the constraints are embedded. It applies to the
constraints that can be nonlinear in ¢, ¢, and ¢
So far, no other technique applies to when fis
nonlinear in g.. The resulting contro]l scheme is
only position and velocity feedback. It does not
need force sensing (i.e.. no force feedback). All
other technique requires the use of Lagrange mul-
tiplier which in turn means force measurement
(when one needs to feedback the Lagrange multi-
plier).

Because of the explicit expression of the equa-
tion of motion, one can see explicitly how the
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input is affected due to the presence of constraint
(ref. eq. (14), when the input matrix is changed
from I to I— MY*C*AM™). This shows the effect
of constraint on control. Many other work (such
as McClamroch and Wang”™ and Su and Stepa-
nenko™) treats the Lagrange multiplier as an
external signal to the system.

Two simulated examples are investigated to
show the validity of the method. It should be
mentioned that any elaborated control schemes
can be developed more easily to achieve more
complex control tasks from the proposed modeling
technique.
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