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Kinematic Description of Damage-Elastoplastic Deformation
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Abstract

In this paper the kinematics of damage for finite elastoplastic deformations is introduced using the
fourth-order damage effect tensor through the concept of the effective stress within the framework
of continuum damage mechanics. Unlike the approach of strain equivalence or energy equivalence,
which is applicable only to small strains, the proposed kinematic description provides a relation be-
tween the effective strain and the damage elastoplastic strain in finite deformation. This is accompli-
shed by directly considering the kinematics of the deformation field both real configuration. The pro-
posed approach shows that it is equivalent to the hypothesis of energy equivalence at finite strains.
The damage effect tensor in this work is explicitly characterized in terms of a kinematic measure of
damage in the elastoplastic domain through a second-order damage tensor.

Kevwords : demage mechanics, kinematics of damage, finite strain
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1. INTRODUCTION of effective stress in damaged materials. This
ploneering work started the subjkct that is

In 1958, Kachanov'” introduced the concept now known as continuum damage mechanics.
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Research in this area has steadily grown and
reached a stage that warrants its use in
today’ s engineering applications. Continuum
damage mechanics is now widely used in dif-
ferent areas including brittle failure (Kraji-

16.17) 15)

novie , Krajinovic and Foneska'?, Luba-
rda et. al®), ductile failure (Lemaitre® ¢,
Chaboche®®, Chow and Wang”), composite
materials (Allen et. al.", Boyd et. al.¥, Voyia-
djis and Kattan*”, Voyiadjs and Park® )
and fatigue (Chow and Wei'”). In this theory,
a continuous damage variable is defined and
used to represent degradation of the material
which reflects various types of damage at
the micro-scale level like nucleation and
growth of voids, cavities, micro-crack, and
other microscopic defects.

In continuum damage mechanics, the effe-
ctive stress tensor is usually not symmetric.
This leads to a complicated theory of damage
mechanics involving micropolar media and
the Cosserat continuum. Therefore, to avoid
such a theory, symmetrization of the effec-
tive stress tensor is used to formulate a con-
tinuum damage theory in the classical sense
(Lee et. al*®, Sidoroff*”’, Cordebois and Si-
doroff'®, Murakami and Ohno®*”, Betten?,
and Lu and Chow®. A linear transformation
tensor, defined as a fourth-order damage ef-
fect tensor is used to symmetrize the effec-
tive stress tensor.

The kinetics of damage is well defined
presently through the effective stress con-
cept.

However, the kinematics of the deformation
with damage is only considered indirectly and
is only limited to the small strain theory
based on the hypothesis of the strain equiva-

23}

lence® or energy equivalence®. The finite
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deformation damage models by Ju'® and Zbib*
emphasize that “added flexibility”due to the
existence of microcracks or microvoids is
already embedded in the deformation gradi-
ent implicity. Murakami* presented the kin-
ematics of damage deformation using the
second-order damage tensor. However, the
lack of an explicit formulation for the kine-
matics of finite deformation with damage
leads to the failure in obtaining an explicit
derivation of the kinematics that directly
consider the damage deformation.

The kinematics of damage is described
here using the second-order damage tensor.
The deformation gradient of damage is de-
fined using the second-order damage tensor.
The Green deformation tensor of the elastic
damage deformation is also derived.

For a detailed review of the principles of
continuum damage machanics as used in this

work, the reader is referred to the works of

Kachanov'®, Lemaitre® *”, Krajinovic'”, Lu-
barda and Krakinovic*, Chaboche® ", Mura-
kami®®, Sidoroff™**, and Voyiadjis and Ka-

ttan®

2. THEORETICAL PRELIMINARIES

Referring to Figure 1, the initial undefo-
rmed configuration of a body is denoted by
C*°, while the elastic damage deformed con-
figuration after the body is subjkcted to a
set of external agencies is denoted by C. The
body in configuration C° undergoes a seque-
nce of deformations starting with an elasto-
plastic deformation without damage, followed
by a damage deformation. This is indicated
by path I in Figure 1. The configuration de-
noted by C¢ implies the elastoplastic de-
formed configuration. The initial undeformed



body may have a pre-existing damage state.
A fictitious effective configuration for the
body denoted by C is assumed to be obtained
from C by removing all the damage that the
body has undergone. This is the fictitious ef-
fective configuration which is based on the
effective stress concept. In this configuration,
the body has only deformed elastoplastically
without damage. C is obtained from C by
applying a specific stress distribution on the
body in order to remove all existing damage
in configuration C. The Initial undeformed
body may have a pre-existing damage state.
In addition to the fictitious effective configu-
ration €, the initial fictitious effective config-
uration denoted by C° is defined by removing
the initial damage from the initial undefo-
rmed configuration of the body by applying
a specific state of stress. In the case of no
initial damage existing in the undeformed
body, the initial fictitious effective configura-
tion is identical to the initial undeformed
configuration.

3. DESCRIPTION OF DAMAGE STATE

The damage state can be described using
an even order tensor(Leckie', Onat® and
Betten”. Ju'¥ pointed out that even for iso-
tropic damage one should employ a damage
tensor(not a scalar damage wvariable) to
characterize the state of damage in materials.
However, the damage generally is anisotropic
due to the external agency condition or the
material nature itself. Although the fourth-
order damage tensor can be used directly as
a linear transformation tensor to define the
effective stress tensor, it is not easy to char-
acterize physically the fourth-order damage
tensor compared to the sceond-order damage

tensor. In this work, the damage is consid-
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Fig. 1 Schematic repersentation of damage-
elastoplastic deformation configurations

ered as a symmetric second-order tensor.
The second-order damage tensor is given by

Murakami?” as follows

b= Z doninf (no sum in k) (1)
or

¢=0b"¢b (2

where hat n* is an eigenvector correspond-
ing to the eigenvalue, hat ¢, of the damage
tensor, ¢. The principal damage tonsor, ¢, in

equation (2) is given by

oo

é 0
¢.,—[0¢z ] (3)
00 ¢

®

and the second order transformation tensor b

is given by
n owon
b= |n W W (4)
n o ow

This proper orthogonal transformation ten-

sor requires that

bmbx,: S (5
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bb™=1 (6)

and the determinant of the matrix [b] is

given by
[[6]] =1 (7>

Voyiadjs and Venson® quantified the
physical values of the eigenvalues hat z}Sk(k
= 1, 2, 3) and the second-order damage
tensor ¢ for the unidirectional fibrous com-
posite by measuring the crack density with
the assumption that one of the eigendirections
of the damage tensor coincides with the fiber
direction provided the load is applied unifo-
rmely along the fiber direction. This introdu-
ces a distinct kinematic measure of damage
which is complimentary to the deformation
kineamtic measure of strain. A thermodyna-
mically consistent evolution equation for the
damage tensor ¢ together with a generalized
thermodynamic force conjugate, Y, to the
damage tensor is persented in the paper by
Voyiadjs and Park® %,

4. CONCEPT OF EFFECTIVE STRESS

In a general state of deformation and
damage, the effective stress tensor ¢ is related
to the stress tensor ¢ by the following linear
transformation (Murakami and Ohno #

0 ;= Mu; Ou (8)

or
c=Mo (9

where ¢ is the Cauchy stress tensor and M

is a fourth-order linear transformation oper-
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ator called the damage effect tensor. De-
pending on the form used forbold #, it is
very clear from equation (8) that the effec-
tive stress tensor g is generally not symmet-
ric. Using a nonsymmetric effecitve stress
tensor as given by equation (8) to formulate
a constitutive model will result in the intro-
duction of the Cosserat and a micropolar
continua. However, the use of such complica-
ted mechanics can be easily avoided if the
proper fourth-order linear transformation
tensor is formulated in order to symmetrize
the effective stress tensor. Such a linear
transformation tensor called the damage ef-
fect tensor is obtained in the literature®®
using symmetrization methods. However, it
lacks a systematic and consistent approach.
Recently, Voyiadjs and Park®” provided a
solid basis for such transformation of the
second-order stress tensor and its justification
for the symmetrization. The effective stress
tensor is symmetrized using the following ex-

pression by Lee et. al.?®,

0 = (8u— D)~ P00 (S— ;) 2 (10)

The fourth-order damage effect tensor is

defined such as

My = (0u— ) 70— p) ' (1)

However it is extremely difficult to obtain
an explicit form of the square root of the
second order tensor in equation (11). Anoth-
er approach is that of the damage effect
tensor using the fourth order damage tensor
¢ as defined by Chaboche®

M= L= i) ™! (12)



where % is a fourth order identity tensor

and is given by
ka]l = %(6.',(5:@1'*‘ 5.-1(5&/) (13)

However, it is not easy to characterize phys
ically the fourth order damage tensor ¢.x as
opposed to the second-order damage tensor ¢,
For the case of isotropic damage, the fourth-
order damage tensor is defined by Ju'Y as

follows
(/’mz = d;&.ﬁ;+dzlm (14)

where d, and d, are scalars (dependent or
independent) damage variables. Using the
second-order anisotropic damage tensor ¢, in
the damage effect tensors given by equation
(11), one may lose the physical sence of the
net stress tensor due to the presence of the
off diagonal elements in the damage tensor ¢,
In order to avoid this problem, the damage
tensor in the principal axes is used in con-
junction with the damage effect tensor. How-
ever, the eigendirections of the damage ten-
sor do not coincide with the eigendirections
of the stress tensor but rather with the con-
jugate force tensor. Since the damage tensor
¢ always has three orthogonal principal dire-
ctions 7nf(k = 1, 2, 3) and three correspond-
ing principal values é(k = 1, 2, 3), equation
(10) can be expressed as follows in the co-
ordinate system that coincides with the three
orthogonal principal directions of the damage
tonsor

G = (Omy— Bs) " 0By Pr) (15)

The effective stress tensor in the principal

damage direction coordinate system is given by

o - uhg 7
Gz = b b0, (16)

Similafly, the stress tensor in the principal
damage direction coordinate system is given
by

G = bubuoy (17)

Using the principle damage direction coor-
dinate system, equation (8) is expressed as

follows
Gon = M O (18)

The fourth-order damage effect tensor
given by equation (11) should now be ex-
pressed as follows

~

Monms = (Sp— B M Sua— bua)™ ' (19)

This tensor is termed the principal damage

effect tensor.

5. FOURTH-ORDER ANISOTROPIC DA-
MAGE EFFECT TENSOR

The explicit representation of the fourth-
order damage effect tensor M using the sec-
ond-order damage tensor ¢ is of particular
importance in the constitutive modeling of
damage mechanics. However, it is impossible
to use the damage tensor ¢ instead of the
principal damage tensor <,Ab directly in the
frmulation. Therefore the damage effect ten-
sor M in equation (8) should be obtained
from equation (15) using the coordinate
transformation.

Substituting equations (16) and (17) into
equation (15), one obtains the following rela-

tion
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Eu = bmlbﬂ/beQIMmanokl (20)

The fourth-order tensor M in equation (8)
now reduces to the following expression as

follows
Mz = bbb by Mo (21)

It is clear that the fourth-order damage
effect tensor presented by equation (11) dif-
fers from the damage effect tensor obtained
by equation (21). Therefore the fourth-order
damage effect tensor pesented by equation
(11) should be expressed in the principal
damage direction coordinate system using the
principal damage tensor ¢.

One of the explicit expressions for the
fourth-order damage effect tensors using the
principal damage effect tensor given by
equation (19) is presented here. The principal
damage effect tensor given by equation (19)
can be written as follows

~

M ey = Qg (22)

where the second-order tensor a is given by

a=[1-¢'* (23)
or

A |

CAZmp = [6mp—¢np] -

1 0 0
1-é .
0 ey 0 (24)
1—-¢
1

0 =
Y1-¢

Substituting eguation (22) into equation

(21), one obtains the following relation
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Ml'kﬂ:bmlbn/bpﬁbqlampanq

=aa, (25)

Using equation (25), a second-order tensor
is defined as follows

aik:bmlbpkamp (26)

The matrix form of equation (26) is as

follows:

La]=[b]Tallb]

6. KINEMATICS OF DAMAGE-ELASTO-
PLASTIC DEFORMATION

A schematic drawing representing the kin-
ematics of elastoplastic deformation and
damage is shown in Figure 1. In Figure 1,
the fictitious effective deformation gradient
denoted by F referred to the fictitious unde-
formed configuration, C°, is only elastoplastic
since deformation due to damage is fictitious-

ly removed. Thus
F=Fv

The deformation gradient referred to the
undeformed configuration, C°, denoted by F
is polarly decomposed into the elastoplastic
deformation gradient denoted by F¢ and the
damage deformation gradient denoted by F©
such that

F = Fop-

The fictitious effective Green deformation

tensor is given by

G=F"F



F?DT Fek

The Green deformation tensor of the dam-
age-elastoplastic deformation can be obtained
through either path I or path Il as shown in
Figure 1. Path I gives the Green deformation

tensor as follows:

G=FF

=F"FF (31

Considering path II the Green deformation

tensor is obtained as follows:

G = FaFe ‘prfﬁ,(ﬁ«ﬂfu T fdo) (32)

where F% and F° are the fictitious effec-
tive initial damage deformation gradient and
the fictitious effective final damage diforma-
tion gradient, respectively. It should be noted
that the deformation gradients following
paths I and Il are not related directly since
an additional state of stress needs to be su-
perimposed to go from either configuration
C° to C° or C to C. This additional stress
state removes all possible damage inherited
in the material during the course of loading
from configuration C° to C. However, the
Green deformation tensors may be obtained
following paths I or II. This is clearly indica-
ted In egation (32) where one needs to re-
move (F¢ F°) due to the additional state of
stress superimposed in the body in order to
remove the damage in the material. However,
one needs to add the initial fictitiously re-
moved deformation due to damage. Both re-
late the real deformed configuration to the
fictitious undamage deformed configuration.
For simplicity, one assumes that no initial

damage exsists in the initial undeformed

U g v

i

body. Consequently one obtains the following

relation such that

Fo Fa=] (33)
and
F=F"
=F~ (34)

Using equations (30), (31), (32), (33) and
(34), one obtains the Green deformation ten-

sor such that

G = F“ GF° (35)

or

(36)

Form equation (36), one obtains the effec-
tive Green deformation tensor as follows
G=F" [G+F* F-DIF*"
=F GF  —F F"+I (37)

Equating quations (35) and (36), one ob-

tains the following relationship

FIGF = F'GF'-F"F+I (38)

The Green-Saint-Venant strain tensor
termed the strain tensor simply in this work

1s defined as follows
_ 1
e = 7(G-I) (39)

The corresponding effective strain tensor is
defined such that

B
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E=%®~1) (40)

Substituting equation (37) into equation
(40), one obtains the effective strain in
terms of the elastic-damage Green tensor
and the fictitious effective damage gradient
such that

e=-F ' (G-DF" (41)

oo

Finally one obtains the relation between *
and * using equations (39) and (41) such
that

e=F" eF" (42)

Alternatively, the strain tensor is given by

e= F e¢F* (43)

The proposed approach provides a relation
between the effective strain and the damage
-elastoplastic strain applicable to also finite
strains and is not confined to small strains
as in the case of the strain equivalence or
the strain energy equivalence approach. Since
the fictitious effective deformed cofiguration
denoted by C, is obtained by removing the
damage from the real deformed configuration
denoted by C, the fictitious effective de-
formed volume denoted by @ is similarly ob-
tained as follows

Q=0
={1-5) 1-4) 1—d) @ (44)
or
R=7'Q (45)
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where £ is the deformed volume, Q¢ is the
damage volume, and bar Jj¢ is the Jacobian
of the damage deformation. The Jacobian of
the damage deformation is given by

= 1 )
Ji= — = —
L T e - (-3 (46)

However, the Jacobian of the damage is
defined such that

= J|F¥ F4 47

The determinant of the matrix [a] in

equation (27) is given by

[lall=106]"| |Lall [[b]]

=] [a]| (48)

1
TVU-d) Q-3 Q-8)

Thus one assumes the following relation
similar to equation (8) without loss of gener-

ality

~

0, =My 0u
= a,0,0k (49)

= F4Fiou

for stresses coinciding with the principal di-

rections of damage. Consequently one obtains
Fi=a, (50)
and

Fi=a, (51)

i



Although the identity is established be-
tween J¢ and | a |, this is not sufficient to
demonstrate the wvalidity of equation (50).
Equation (50) is assumed here based on the
physics of the geometrically symmetrized ef-
fective stress concept''*”. Equation (42) may

now be expressed as follows

€., = ax a;' eu (562)
or
e=a'ea"
=Me (53)

Similiarly, equation (43) can be writen as

follows

E = aud, €y

:MIH_E-A/ (54)
or
e=aca’
= Me (55)

The relations combining the strain of the
damage-elstoplastic deformation and the ef-
fective strain In equations (52) and (54) in-
dicate that these relationships are equivalent
to those obtained using the hypothesis of en-
ergy equivalence (Cordebois and Sidoroff '*).
The details of the damage elasto-plastic con-
stitutive models using the proposed kinemat-
ics, the evolution laws of damage and the
numerical implementation using finite element

method will be stated in the forthcoming

paper.

RE R

7. CONCLUSION

The fourth-order anisotropic damage effect
tensor, M, expressed by the second-order
damage tensor ¢, Is reviewed in the process
of the geometrical symmetrization of the ef-
fective stress tensor with an introduction of
a distinct kinematic measure of damage
which is complimentary to the deformation
kinematic measure of strain. The explicit
representation of the fourth-order damage
effect tensor is obtained with reference to
the principal damage direction coordinate
system.

The damage-elastoplastic kinematics at fi-
nite strain allows one to obtain the strain
tensor of the elastoplasic damage deformation
without the use of either the hypothesis of
energy equivalence or strain equivalence.
The proposed approach provides a relation
between the effective strain and the damage
-elastoplastic  strain  applicable to finite
strains, not confined to small strains as in
the case of the strain equivalence or strain

energy equivalence approaches.
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