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Development of Stochastic Finite Element Model for
Underground Structure with Discontinuous Rock Mass Using
Latin Hypercube Sampling Technique
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Abstract

A stochastic finite element model which reflects both the effect of discontinuities and the uncer-
tainty of material properties in underground rock mass has been developed. Latin Hypercube Sampli-
ng technique has been mobilized and compared with the Monte Carlo simulation method. To consider
the effect of discontinuities, the jint finite element model, which is known to be suitable to explain
faults, cleavage, things of that nature, has been used in this study. To reflect the uncertainty of ma-
terial properties, multi-random variables are assumed as the jint normal stiffness and the jpint shear
stiffness, which could be simulated in terms of normal distribution. The developed computer program
in this study has been verified by practical example and has been applied to analvze the circular
cavern with discontinuous rock mass

Keywords : stochastic finite element, latin hypercube sampling technique, underground struclures, discon
tinuous rock mass, joint finite element model, multi-random variables
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1. INTRODUCTION

Underground structures are widely used to
overcome space shortages of aboveground
structures, to secure a smooth traffic flow or
to accommodate important facilities requiring
special isolation.

With a. growing usage of underground
structures, there have been increased much
concerns about the safety assessment for
underground structures with discontinuous
rock mass. From an engineering standpoint,
the rock mass differs from general structural
materials for following two points ; one, in
the rock mass, there always exist discontinu-
ities such as microfissure, jint, fracture,
faults, and two, the same rock type can
have a variety of physical properties. Recent
numerical methods for the safety assessment
of underground structure are classified into
three categories ; DEM (distinct element
method), BEM (boundary element method),
and FEM (finite element method).

The accuracy of these methods by and
large depends on the rationality of input
data. However, since the design work for
underground structures is generally carried
out before the stage of excavation, much
uncertainties are involved in physical proper-
ties for the design. Since various in-situ and
laboratory tests to be performed at the site
investigation are costly, moreover, it seems
to be very difficult to get sufficient data for
the exact stress analysis. Thus, most of nu-
merical analyses for underground structures
have not been reflected such uncertainties in
physical property of rock mass, and have
been performed on the assumption that all
the characteristic values of rock mass at the
site are constant. As such analyses do not
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reflect uncertainties in physical properties of
rock mass, they are not simulated in real sit-
uations, that lead to the overdesign or re-
quire drastic changes of design during the
construction work which result in economic
losses. In order to realize more rational anal-
ysis for underground structures, therefore, it
is desirable to use the stochastic model which
can consider uncertainties of the physical
properties in discontinuous rock mass.

The study related to the stochastic approa-
ch for uncertain structures in progress up to
now has been limited to only aboveground
structures. In addition, the perturbation the-
ory or the MCS(Monte Carlo Simulation)
technique applied to the stochastic finite ele-
ment analysis field so far requires enormous
number of calculation or complex solution
procedure in producing more accurate results.

The LHS (Latin hypercube sampling)
method"”, which is a sort of variance reduc-
tion technique capable of maintaining the de-
gree of accuracy while the -calculation
amount is greatly reduced by preserving
strong points and compensating weak points
of MCS technique, has been widely used to
the analysis of neutron transport in the nu-
clear engineering field since it was presented
by the Sandia National Research Insititute of
the United States in 1980.

In this study, a stochastic finite element
model that reflects both the effect of disco-
ntinuities and uncertainty of physical proper-
ties of rock mass has been developed. LHS
technique to make up weak points of the
MCS method has been applied. Concerning'
discontinuities in rock mass, there has been
used the jint finite element model® for the
analysis which is known to be superior in
explaining faults, cleavage, things of that



nature. To reflect uncertain material proper-
ties in rock mass in this study, there are in-
troduced two random variables such as the
joint shear stiffness and the Jint normal
stiffness, which could be assumed in a nor-
mal distribution. New computer program has
been coded and verified through the analysis
of behavioral examples with discontinuous
rock mass, and its practical applicability has
been confirmed by using the stochastic finite
element technique for the analysis of a circu-
lar rock cavern with two hypothesized disco-
ntinuities.

2. STOCHASTIC FINITE ELEMENT AN-
ALY SIS

2.1 Generation of random deviates from
distribution

In this study, the power residue method”
has been adopted to generate pseudo-random
numbers denoted by {u,}, n=0, 1, 2, ---. If
cumulative distribution function (CDF) of a
random variable X is Fi(x) and the cumu-
lative probability of X is given in the form
of Fy(x)=z, the set of random deviates x
defining the distribution of X is represented
as the following equation using the inverse
method*.

x,=Fi'(z),1=1,2 3, n (1)

As pseudo-random numbers are in the
form of uniform distribution on the interval
(0,1), it becomes z,= u, when the CDF of
pseudo-random numbers and that of desired
distribution homologize 1:1.

When pseudo-random numbers are not
used in sufficiently great size, they may be
biased partially between 0 and 1, and are
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potentially unable to represent the desired
distribution. If the desired distribution is di-
scretized into m nonoverlapping intervals of
equal probability and one value from each
interval is selected at random, more optimal
sampling can be ensured. In order to gener-
ate distributions of multi-variables, this pro-
cedure is repeated for each variable, each
time working with the corresponding CDF.
The next step involves pairing the selected
values. If two variables(X,, X, are sampled
independently and paired randomly, the sam-
ple correlation coefficient of the two random
deviates (S,, S.) of each pair shall be consi-
dered the effect by the sampling fluctuations.
In this study, the following correlation factor
used widely in the LHS technique is applied®.

2 2 i
Z( l_n+1>}‘

=1

56 Yls, -5

(2)

®
—_—
e
ity
1%}
3
09|+
o

where, S, indicates the random number
obtained in i intervals of a variable X,, and
S, indicates the random number obtained in
I intervals of a variable X, Ifp. is larger,
statistical correlation between two random
deviates is higher. So, in LHS technique,
when this value is less than 1, a pair of ran-
dom numbers is considered to be relatively
reasonable".

2.2 Spatial variations of material prop-
erties

The spatial variation of material properties
is assumed to be a 2D homogeneous stochas-
tic process in this study. The fluctuating
component g {x) of a material property is then
assumed to have mean zero E[g(x)]=0 and
the autocorrelation function R{(8 =E g (x),;
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gx+8 ), where x={x, y}" indicates the po-
sition vector, j denotes the random variable
number, and £=[& & ]" means the separa-
tion vector between two points x and x+&
If the randomness of the spatial variation is
isotropic, the autocorrelation function of the
spatial variation is supposed to be a function
only of the distance | &|. The following
form of an isotropic autocorrelation function
is considered for this study ;

R/(£) = 0! EXP H%)] (3)

where, o, is the standard deviation of ran-
dom variable j and d can be defined the
scale of correlation such that the larger it is,
the more slowly the correlation disappears®.
If the discontinuity is discretized by m jint
elements, the fluctuating component g.(x) is
composed of m material property values as-
soclated with these m element correlation each
other. Their correlational characteristics can be
specified in terms of the covariance matrix
Cov,lgy, g>]1,x=E/[g.\', gvl,i=Ri(&, vt Wh-
ere the subscript j indicates the random var-
lable number and &, , is the separation bet-
ween the centroids of elements ¢ and k.
Therefore, the final distribution of random
variable can be obtained by multiplying
equation (1).

Gi(x, Cov);,=Cov,lgy, gv]i* [x.], (4)

2. 3 Finite element analysis

In this study, a constant strain 4 node jint
element suggesetd by Goodman? was used
for the stochastic finite element analysis of
underground structure. It has a uniform
thickness simulating the irregular and varia-
ble region between joint walls. Beginning
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from the potential energy formulation and
minimizing with respect to nodal displaceme-
nts, the element stiffness for the four-node
pint element can be derived. In the deriva-
tion of the stiffness matrix, it is assumed
that the joint element has length £ and each
of two pairs of nodes, (I, L) and (J, K),
which can reflect the effect of jint thickness
by an iterative solution procedure®, initially
have identical coordinates.

The relationship between displacements at
nodes of the joint element and the correspo-
nding increments of external forces can be
expressed as follows:

{4F} = [K )] (u} (5)
where, {4F} = {dF,, 4F,  4dF ., AF ., 4AF, «
AdF,  AF, . AdF, .} (5a)

B, 0 ke 0 <k, 0 <k 0

0 2, 0 0 0 0 0 -2,

ke 0 ke 0 -k 0 ki O

g1 0 0 0 2 0 -2k 0 0
e S T R S A

0 0 0 -2 0 26, 0 0

-k, 0 -k 0 ko 0 kO

0 -2, 0 0 0 0 0 2,
{U} = {U]' V;, Uy Uy Uk, Vg Uy, UL} r (SC)

When the normal stiffness(k,) and shear
stiffness (k) of discontinuites are considered
as random variables, the element stiffness
matrix of a joint element can be represented
in the following form.

[K/] = [K/] io, J (1+g,‘, (ksn)) (6)

where [K ., is the matrix to which the
mean value of pint stiffness used for element



stiffness matrix defined by equation (Bb) is
applied. And, in equation (6), g;, (k,,) indi-
cate the distribution function to be considered
the correlation between joint normal stiffness
and joint shear stiffness, which can be obtai-
ned by reflecting the G (x, Cov), calculated
by expression (4).

The solution (5) provides the forces and
displacements at nodal points for the next it-
erative calculation. Iterative procedures de-
pend on nonlinear deformation laws appropri-
ate for a discontinuity in a rock mass. In
this study, to modify the behaviors of jint
opening and jpint closure, the following equa-
tion suggested by Goodman® was used.

v

Fn:an,n

(7

where, F, . is the initial external force at a
nodal point, 4 is the difference of normal
displacements between the individuals of a
nodal point pair caused by an increment of
normal force (F, — F..), V., is the jint
maximum closure beginning from initial load
F.o

3. A NUMERICAL ANALYSIS PROGRAM
OF UNDERGROUND STRUCTURES

3.1 Composition and function of the
program

A 2D FEM program has been developed by
which we could estimate the response varia-
bility due to the physical property variation
of discontinuities within rock mass. This pro
gram consists of a main program and 21 sub-
programs coded by Fortran language. The
element library of this code includes three
different element types : (1) plane strain fi-
nite element with 3 or 4 nodes to model in-
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tact rock masses, (2) Jint finite element to
model discontinuities, and (3) truss finite ele-
ment to model reinforcemenet members such
as rockbolts. To realize an efficient inverse
matrix calculation of global stiffness matrix,
the modified Cholesky method and the skyline
algorithm have been adopted. As for the
method of considering the nonlinearity of di-
scontinuities, the load transfer method” sug-
gested by Zienkiewicz has been employed.

3. 2 Verification examples

In order to verify the program prepared
by this study, a stochastic analysis was per-
formed on the analysis model indicated in
Figure 1. Figure 1, which refers to the dete-
rministic model presented by Van Dillen and
Ewing”, is intended to grasp the Jjint slip

Node B Node ¢

W - 20kg om-
W 10kg /e’
Node A \ ka/m Node D
4 y y

7F Elefnen{ 1 T

10em

0.1
L i N

' 10em i

Joint Element !
Normal stiffness = 100kg/cm?
T./auithe ratio of tensle to compressive strengh of wall
rock) =01
B.(the ratio of residual to peak strength) =06
O (friction angle) =0°
I, (dlatancy angle) =0°
Ve (maximum joint closure) =0.1cm
Fane stran Hement !
E=500kg/cm*
v = (poisson’ s ratio) =0

Fig. 1 Model for verification
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causing discontinuity by the changes in the
joint shear stiffness. If there is no shear
stiffness of discontinuity in the figure, the
right and left parts of the discontinuity be-
have separately against vertical load. Thus,
the vertical displacement of left part is twice
as much as that of right part, as uniform
loads of 20kg/cm® and 10kg/cm’ are applied to
the left upper part and right upper part re-
spectively. Moreover, with the increase in the
size of joint shear stiffness, the difference of
vertical displacement between the left and
right parts adjpcent to the discontinuity will
reduce. Referring to such tendency of deter-
ministic analysis results, a stochastic analysis
has been performed for the case when the
mean value of jint shear stiffness is 100kg/cm?
and the standard deviation is the normal dis-
tribution of 80kg/cm® in this example. For
this analysis, the scale of correlation(d) was
assumed to be 1.0, and the physical proper-
ties except jpint shear stiffness were assumed
to be of deterministic value indicated in Fig-
ure 1. Iteration number to simulate the no-
nlinear behavior of discontinuity was used 30
times through the convergence tests” of vertical
displacement at the loaded point. In this case,
tolerance limit in increment is within 1.09%.

For the purpose of selecting a reasonable
sample size, the sample coefficient of varia-
tion (Standard deviation/Mean ; SCOV) of the
pint shear stiffness sampled at pint element
1 was examined according to the increase in
the sample size. Figure 2 indicates the vari-
ance of the pint shear stiffness sampled
from joint element 1 : (a) is the analysis re-
sult by the MCS method and (b) is that by
LHS method. The SCOV of the jint shear
stiffness obtained by the MCS method shows
unstable tendency with the changes in the
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sample size which is less than 100. However,
in the case of LHS method, stability was in-
dicated when the sample size was more than
30. In the MCS method with 100 samples, the
mean value characteristics of the sampled
pint shear stiffness was about 2.1% greater
than the input characteristics, and the stan-
dard deviation was about 2.5% smaller. On
the other hand, when the LHS method with
100 samples was employed, the mean value
was about 0.5% smaller compared to input



characteristics and the standard deviation
was about 0.1% greater. In this example, the
estimated error in the mean value and the
standard deviation obtained by the MCS
method with 100 samples was almost the
same as the error obtained by the LHS
method with 20 samples.

The frequency distribution of the sampled
shear stiffness in joint element 1 is indicated
in Figure 3. In Figure 3, (a) indicates the
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(b) LHS results

Fig. 3 Comparison of LHS results with MCS re-
sults about distribution characteristics
of sampled joint shear stiffness at ele-
ment 1
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result of analysis by the MCS method with
100 samples, and (b) shows the result of
analysis by the LHS technique with 50 sam-
ples. As indicated in the figure, the distribu-
tion characteristics by two different methods
show approximately the normal distribution
form defined as input. However, it is noted
that the result by the LHS technique indica-
tes the normal distribution form defined as
input more accurately even with less samples
than that by MCS technique. As observed in
Figure 3, the result by the LHS method has
an error of less than 0.5% of input, while
the MCS method requires about 250 samples
to realize an error of 0.5%. In addition, the
time of calculation required by the MCS
method with 250 samples with pentium model
90 MHz is about 4.2 times that of the LHS
method. Therefore, it is demonstrated that
the LHS technique is much more efficient
than the MCS method in terms of both time
and size of calculation.

The frequency distribution of vertical dis-
placement at node B and C obtained by sto-
chastic analysis is indicated in Figure 4. As
indicated in this figure, the frequency distri-
bution of vertical displacement at nodes B
and C obtained by two different methods are
similar to each other. Nodes B and nodes C
are the left and the right side of discontinu-
ity composing jint elements, and the differ-
ence of vertical displacements at the two
points means the shear displacement generat-
ed at joint element. The vertical displacement
at node B indicates a concentrated tendency
in the range of about -0.35cm ~-0.34cm and
the vertical displacement at node C indicates
a concentrated tendency in the range of
about -0.26cm~-0.25cm. The vertical dis-
placement distribution at both nodes are of

B
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MCS Sample Size =100
Nonlinear Interation Step=230,
20 4 (Tolerance Limits=1.0%)

At Node B

~

At Node C

™~

Frequency Number

-.36 -32 -28 -24

Vertical Displacement at Node B and € (em)

(a) MCS Results

MCS Sample Size = 50
Nonlinear Interation Step=30.
8 4 (Tolerance Limits=1.0%

64 At Node B

44 At Node C

Frequency Number

NI T

-40 32 -.28 -24 -20

Vertical Displacement at Node B and € (em)
(b)LHS Results

Fig. 4 Distribution shape of sampled displace-
ments at nodes B and C

the Log-Normal type.

In order to verify the feasibility of this
stochastic output in Figure 4, we conducted
deterministic analyses of many cases with
various jint stiffness in the 99.8% range of
normal distribution. The joint shear stiffness
which belongs to the 99.8% of normal distri-
bution with the mean value of 100kg/cm® and
the standard deviation 30kg/cm® is substituted
into the equation of normal distribution funec-
tion, and then 7.3kg/cm*~192.7kg/cm® can be

A
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computed. The vertical displacements at
nodes B and C obtained by deterministic
analyses are indicated in Figure 5. As shown
in Fig. 5, with the decrease of the joint shear
stiffness, the right and the left sides of di-
scontinuity behave separately against vertical
load. Thus, when the joint shear stiffness ap-
proaches to zero, the vertical displacement at
node B converges twice as much as that of
node C. Also, the difference of vertical dis-
placements at the two nodes tends to de-
crease with the increase in the jint shear
stiffness. In this example, the vertical dis-
placerments at nodes B and C are generated
in the value of -0.396cm and -0.204cm respe-
ctively when joint shear stiffness is 10kg/cm?
-0.347cm and -0.254cm when Jjoint shear stiff-
ness is 100kg/cm? and -0.332cm and -0.268cm
when joint shear stiffness is 190kg/cm® If
pint shear stiffnesses were uniformly sam-
pled from each range of normal distribution,
the vertical displacement at node B would
indicate more concentrated tendency in the
range of -0.347cm~-0.332cm rather than the
range of -0.396cm~-0.347cm, and the vertical
displacement at node C would show more
concentrated tendency in the range -0.254cm~
-0.268cm than in the range of -0.204dcm~-0.254
cm. When the stochastic results indicated in

-15
- e AtNode C
"20~\‘?\' ~-=-- AtNode B
.25 ] « B R
| .o

-.30 {Shear Dispacement Zone of Joint Element 1

s [ e

-40 {1

Vertical Displacement(cm)

Nonlinear lteration Step=30,
(Toleranece Limit=1.0%)
'45 T T T T
0 40 80 120 160 200

Joint Shear Stiffness (kg/icm?)

Fig. 5 Deterministic anlaysis output



Fig. 4 are compared with deterministic resu-
Its in this way, it may be understood that
the ranges of vertical displacement distribu-
tion and the concentration tendency exist
within a reasonable scope.

4. STOCHASTIC ANALYSIS FOR A
CIRCULAR CAVERN IN DISCONTINU -
OUS ROCK MASS

In order to confirm the applicability of the
program, a stochastic analysis was performed
on the underground structure in discontinous
rock mass indicated in Figure 6. Rock mass

o3
Joint Element 1 N
4\ 50m
q Joint Element A ./ joint Element D e
0 B\2° e
Ny
Joint Element B
(] |20m
Joint Element C _
o o
Q [} BOm
|
o S
O 0O QO Q 0O 0 e}
et .
30m 20m 50m
ldealization :

Bock ; 240 lsoparametric
Quadrilateral
Elements

Discontinuity ; 40 Joint Elements

Matenal Froperties (Deterministic Value) |
Rock
E : 500.000kg/om?
v:025
elunit weight) =26t/m?
Discontinuity
T/a.the ratic of tensie to compressive
strengh of wall rock) =0.1
B.{the ratio of residual to peak strenght) =086
@, (friction angle) =0°
I,{diatancy angle) =0°
Ve lmaximum joint closure) =1cm

Fig. 6 A circular cavern within discontinuous
rock mass
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was assumed to be granite with unit weight
of 2.6t/m?® and hydrostatic initial stress was
only applied as load.

The jint shear stiffness and the jint nor-
mal stiffness were considered for random
variables simulated in terms of normal distri-
bution with the mean value of 500kg/cm® and
the standard deviation of 32% against mean
value. Iteration number to simulate the nonli-
near behavior of discontinuity was used 50
times through the convergence tests of dis-
placements around cavern. At this time, the
increment tolerance limit in increment is
within 2.0%. In addition, 50 LHS samples
were used for the analysis.

10
Mean = 499.0kg/em*
St.D. = 160.8Kkg/cm”
84
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5 89 nininin
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g 47 . -
= ' P
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Fig. 7 Sampled joint stiffness of joint element 1
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Distribution form of the joint stiffnesses
sampled at element 1 is indicated in Figure
7. Figure 7 expresses reasonably the normal
distribution form defined as input. In this ex-
ample, the mean value of the sampled pint
shear stiffness at element 1 is about 0.2%
smaller compared with the input value and
the standard deviation was about 0.7%
greater. In the case of jint normal stiffness,
the mean value was about 0.5% greater and
the standard deviation was about 0.2%
greater compared with the input.

The sampled displacement at 4 representa-

Hori. Disp. at
Cavern Left Side

Vertical Disp. at
Cavern Bottom

Frequency Number

Displacement. of Representative Point
around Cavern (mm)

(a)Positive direction

Vertica Disp. at
Cavern Crown Point

Hori. Disp. at
Cavern Rght Sice

Frequency Number
PN
1

-30 -2.5 ~2.0 -15 -1.0

w

Displacement of Representative Point
around Cavern (mn)

(b) Negative direction

Fig. 8 Sampled displacements at 4 representa-
tive points around cavern
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Table 1 The distribution characteristics of dis-
placement at 4 representative points
around cavern

Vertical Disp. at | Vertical Disp. at] Horizontal Disp. | Horfzontal Disp.
Cavern Crown | Cavern Botiom | at Cavern Left |at Cavern Right
Point Side Side
Meanimm![  —0.966 1.991 1.435 —1.522
StD.Amm) [ £0.312 +0.301 +0.300 +0.309
Variance 0.322 0.151 0.211 0.203

tive points around cavern are indicated in
Table 1 and Figure 8. The displacements
after excavation occur toward the inner part
of the cavern due to the release of initial
stress and are of log-normal distribution
form in general It is noticeable that the
magnitude and variance of displacements
vary depending on the locations reviewed. In
this example, the variance of vertical dis-
placement at cavern crown point is about 2.1
times that at the cavern bottom and about 1.4
~1.6 times that at the cavern left and right
side. Therefore, the top of cavern has the
greater sensitive response to the displacement
caused by changes in the stiffness of disco-
ntinuities in comparison with 3 other points.
The distribution characteristics of the shear
slip and normal closure of jpint elements(A,
B,C,D of Figure 6) intersecting cavern are
indicated in Table 2 and Figure 9. As indica-
ted in the Table and Figure, the distribution

Table 2 The distribution characteristics of
sampled displacements at 4 joint ele-

ments
Joint Element A B C B
Joint Mean value | 0350 0427 0.167 0.245
shear SLD. | +0207 | +0216 | #0193 | +020
slip (mun) Varance | 0591 | 0506 | 1155 | 082
Joint Mean value | 1580 1.526 1.751 1516
normal SLD. | #0763 | 40748 [ +0752 | +073
doswemm) | yarance | 0483 | 0490 | 0429 | 0484
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Fig. 9 The distribution characteristics of dis-
placement at 2 representative joint ele-
ments

characteristics of the sampled jint slip and
the sampled joint normal closure are different
beacause the size and direction of the initial
stress act differently due to the location of
discontinuity. In this example, the sampled
jpint slip obtained from 4 elements are gen-
erally log-normal distribution type. However,
the sampled joint normal closure obtained
from the same elements indicate the normal
or the log-normal distribution type with rela-
tively smaller variance than the joint slip.
Joint slips tend to concentrate in the range
of 0.13~050mm at element A, 0.2~0.5mm at
element B, and less than 0.25mm at elements
C and D. The largest mean value of joint
slip of 4 elements was found in element B,
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and the largest variance against the mean
value was found element C. The results of
Table 2 indicated the most sensitive response
at element C to the jint slip, while similar
sensitive response at all elements to the jint
normal closure. In the case of jint normal
closure, the concentration was found in the
range of 1.0~2.0mm in general at 4 elements.
It took about 46 minutes to calculate this
example with Pentium 90MHz. When the
Monte Carlo simulation was employed, it took
about 2,500 minutes with 100 samples and
about 5,000 minutes with 200 samples, revea-
ling increase of time in proportion to the
sample size. Moreover, in comparison with
the distribution characteristic defined as the
input, the shear stiffness distribution sampled
from joint element 1 by the MCS method in-
dicated about 1.0% difference in the mean
value and 2.2% difference in the standard
deviation when the sample size of 100 were
used and 1.0% difference in the mean value
and 0.5% difference in the standard deviation
when the sample size of 200 were used. In
this example, therefore, the LHS method is
expected to reduce the calculation time requ-
ired by the MCS method by 50~100 times.

5. CONCLUSION

In this study, a stochastic finite element
model that reflects the uncertainty of physi-
cal properties in discontinuous rock mass has
been proposed by applying the LHS techni-
que. Majpr performances are summarized
as ;1) From the numerical results through
verification examples, it has been observed
that the analytic results by LHS method
were similar to those by the MCS method.
When the stochastic results were compared
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with the deterministic results, the variance
and the concentration tendency of vertical
displacement was within a reasonable value.
Therefore, it could be concluded that the nu-
merical model developed by this study was
rational and reasonable. 2) Judging from the
analytic results on the model of Figure 7, the
largest variance among 4 representative
points around the cavern was found at the
crown point, the value of which was 2.1
times that at the bottom and about 1.4 to 1.6
times that at the left and the right side.
Among 4 jpint elements intersecting the cav-
ern, element C was most sensitive to the
Joint slip, while the variance of the joint nor-
mal displacement was found to be similar at
all elements. The sampled jpint normal clo-
sure was determined to be in a type of log-
normal distribution with relatively smaller
variance than the jint slip. In addition, it
was noted that the LHS technique significa-
ntly reduced the computation time to be re-
quired for the MCS method by about 50 to
100 times.
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