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Elastica of Simple Variable-Arc-Length Beams
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Abstract

In this paper, numerical methods are developed for solving the elastica of simple beams with vari-
able~arc-length subjcted to a point loading. The beam model is based on Bernoulli-Euler beam the-
ory. The Runge-Kutta and Regula-Falsi methods, respectively, are used to solve the governing dif-
ferential equations and to compute the beam’s rotation at the left end of the beams. Extensive nu-
merical results of the elastica responses, including deflected shapes, rotations of cross-section and
bending moments, are presented in non-dimensional forms. The possible maximum values of the end

rotation, deflection and bending moment are determined by analyzing the numerical data obtained in
this study.

Keywords . Bernoulli-Euler beam theory, elastica, Runge-Kutta method, Regula-Falsi method, variable-arc-
length beam.

1. INTRODUCTION shed in 1971 by Schmidt and Da Deppo?”.
Present-day applications of the elastica invo-

The first studies of the elastica were pub- lving variable-arc-length beam were dis-
lished in 1774 by Euler”. A survey of the cussed by Conway®, Gospodnetic”, Schile and
classical literature on this subject was publi- Sierakowski”, Wang and Kitipornchai® and
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Chucheepsakul, et al”. On the other hand,
the works related to the constant deformed
arc-length beam are in references*'”. No-
where in the open literature were found so-
lutions for the class of elastica of variable-
arc-length beams considered herein : numeri-
cal method solving the elastica of such beam
using the numerical integration technique
combined with the Regula-Falsi method.

In the analysis of the elastica, one usually
begins with classical Bernoulli-Euler beam
theory, the non-linear differential equation
that relates deflection to load. This beam
theory is also used in the present analytical
studies. The following assumptions are inher-
ent in this theory . the beam is linearly elas-
tic, the neutral axis for bending of the beam
is inextensible, and the Poisson’s ratio and
transverse shear deformation are negligible.
In addition, the point load is assumed to sus-
tain its loading position and vertical direction,
respectively.

Historically, solutions of the elastica have
four forms : (1)closed-form solutions in terms
of elliptic integrals ; (2) power series solutio-
ns ; (3) numerical solutions ; and (4) experi-
mental solutions. The present study begins
with an analysis involving numerical solutions
using the Runge-Kutta and Regula-Falsi
methods, and ends with numerical results and
discussion including the comparison of the
results between this study and references.

2. MATHEMATICAL MODEL

The undeflected simple variable-arc-length
beam with a vertical point load P is shown
in Fig. 1{a). The beam’s span length is [,
and the load position is @l away from the
end A, which does not change after deform-
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ing. Here e is defined as the position param-
eter. This beam is supported on a frictionless
support at the end A and is hinged at the
end B.

The symbols for the deflected beam are
depicted in Fig. 1(b). The shape of the elas-
tica is defined by the (x, y) coordinate
system whose origin is at A. At the material
point (x, ¥), the beam’s arc length measuring
from the end A is s, the rotation of cross-
section is §, and the bending moment is M.
At the ends A and B, the rotations of cross-
section are #x and s, respectively. Also both
the horizontal and vertical components of re-
action at the end A are presented as H and
V, respectively. ‘
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Fig. 1 (a) undeflected beam and
(b) deflected beam with its symbols

When the equilibriura equation is used, the
vertical component V of reaction at the end
A for the deflected beam becomes

V=P(—a 1)

Considering the rotation of cross-section at



the end A, 8., the horizontal component H of
reaction becomes

H=Vtanf.
=P(l—a tanf (2)

Using equations (1) and (2), the bending
moment M at (x, y) is obtained :

M=P(l—a (x+tanbsy), 0<x<al @B.D
M=Plall—x)+ (1—a tanb.y],
al<x<l (8.2

It is assumed that Bernoulli-Euler beam
theory governs the beam behavior under
load, for which the differential equation for
13)

the elastica'” is

yi=— (M/ED) [1+ (y)?]*? (4)

where superscript i is the operator d/dx and
EI is the flexural rigidity. The appropriate
boundary conditions for the ends A (x=0)
and B (x=1{) are

y=0 at x=0 (5)
y=0 at x=I 6)
which impose zero deflections at those ends.
Using the differential relationship for the
arc length, or (ds)*= (dx)*+ (dy)* the fol-
lowing equation is obtained :

st=[14 (y)°?]'""* (7)

In term of the arc length variable s, the
boundary condition of the end A is

s=0 at x=0 (8)

o]yt b4 5t

To facilitate the numerical studies and to
obtain the most general resuits for this class
of problem, the geometric parameters, the
loadings, and the governing differential
equations with their boundary conditions
above are cast in the following non-dimensi-
onal forms. First, the coordinates (x, y) and
the arc length s are normalized by the span

length I, or
E=x/l (9)
n=y/1 (10)
A=s/l (11)

The three loading parameters are

p=Pl*/EI (12)

v=VI*EI (13)
=p(l—a

h=HI*/EI (14)

= p{l—a)tanfa

When equations (3. 1) and (3. 2) are sub-
stituted into equation (4), and equations (9),
(10) and (12) are used, the non-dimensional
form of equation (4) becomes

7 =—p(l—a) (E+tanbay) [1+ ()17,
0<é<a (15.1)

7 =—plal1—9 + (Q—adtanfuy] [1+ (7)) 1%
e<&<1  (15.2)

Also, with equations (10) and (11), the
non-dimensional form for the arc length,

equation (7) becomes

A =1+ (16)
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In the above equations, prime denotes the
operator d/dé&

Consider boundary conditions. Based on
equations (5) and (8), with equations (9)-
(11), the two boundary conditions for the
end A become

7 =0 at &=0 (17)
A=0 at £&=0 (18)

Based on equation (6), with equations (9)
and (10), the boundary condition for the end
B becomes

7=0 at &=1 (19)

3. NUMERICAL METHODS

Numerical values were assigned for the
load parameter p and position parameter .
Then the differential equations (15.1), (15.2)
and (16), subjct to equations (17) and (18),
were solved in a straightforward way using
the Runge-Kutta method'®. These calculatio-
ns yielded the shape of elastica »=7(8, the
slope " =7" (& and the arc length A=A(9.
To compute the value of 8., the rotation of
cross-section at the end A, the Regula-Falsi
method'¥ combined with equation (19) was
used, which is one of the solution methods of
non-linear equation.

The algorithm developed to solve these
equations had two convergence criteria. This
algorithm is summarized as follows.

(1) Assume a trial value ., and compute
7" =tanf, at £=0. Choose the initial value
of 6. as zero.

(2) Integrate equations (15.1), (15.2) and
(16) with equations (17) and (18), and the
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caleulated value of 7° for £ in the range (0~
1 using the Runge-Kutta method. The results
give trial solutions for 7, »° and A

(3 If the assumed value of 6, is the
characteristic value of the elastica, then D=
7(1) must be zero due to equation (19). The
first criterion for convergence of the solution is

| D| <tol, 20)

(4) If the value of D does not satisfy the
first convergence criterion of equation (20),
then increment the previous value of 8., and
compute 7 =tanba.

(5) Repeat steps 2~4 and note the sign of
D in each iteration. If D changes sign be-
tween two consecutive values . and 8a,,
then the characteristic value 8. lies between
G and Gy

(6) Compute the advanced value of 8.,
expressed in equation (21), based on trial
values of 8, and 6., using the Regula-Falsi
method.

_ 9A2|Dl| +€A1|D2|
NETDIFID) @1

where D, and D, are the values D=7(1) for
f.a and 6, respectively. The second criterion
for convergence of the solution is

| (HAI—(?,\Z)/HA,I <tol, (22)

(7) Choose #.=0 as the value that satis-
fies the convergence criteria, equations (20)
and (21). Compute the corresponding final
solutions to the elastica, the shape 7, slope
7" and arc length A, using the Runge-Kutta
method.

(8) Compute the v and h from the equati-
ons (13) and (14), the 6, 6z and the non-di-



mensional bending moment m from the fol-
lowing equations, respectively :

6 =tan"'(y") (23)
Gs=tan"'[n" (11} (24)
m=MI/EI

=p(l—a) (E+tanbsy), 0<&<e (25.1)

m=pla(l—8 + (1—a tanbay],
a<é<l (25.2)

Based on this algorithm, a general FOR-
TRAN 77 computer program was written. All
computations were carried out on a Personal
Computer with graphics support. For nearly
all of the numerical results presented herein,
a step size of 4£=0.01 in the Runge-Kutta
method was found to give convergence for i
to within three significant figures, when the
tol, and tol; in equations (20) and (22) were
fixed as 1x1077 and 1X107% respectively.

4. NUMERICAL RESULTS AND DISCUS-
SION

In the first series of studies, the numerical
methods discussed above were used to calcu-
late the elastica and the results were com-
pared to those available in references®*”. The
results of reference [6] and [7] are based
on the Elliptical integration and Shooting op-
timization methods, respectively. It is noted
that the solutions based on the Elliptic inte-
gration method were the closed-form solutio-
ns and those based on the Shooting optimiza-
tion method were the numerical solutions. In
the Shooting optimization method in reference
(7], the three characteristic values, i 6s
and Ae,, of the elastica were calculated by
the optimization algorithm in which the sum

ojy J-ukAg 2

=0

of error norms given by the differences in
values of 6, £ and 7 between the prescribed
and computed terminal boundary conditions
was minimized. In the numerical method pre-
sented herein which is a contrast with the
Shooting optimization method, only one char-
acteristic value . of the elastica is calculated
by simply using the Regula-Falsi method and
the remaing characteristic values &s and A,
are not necessary to obtain the elastica.

These comparisons are summarized in
Table 1 which shows the reference values
are nearly identical to the present results.
Such comparisons serve to validate the nu-
merical results developed herein. Especially, it
is found that both the present and Shooting
optimization methods are very accurate since
the Elliptic integration's solutions are exact
ones.

In the second series of studies, the numeri-
cal method developed herein were used to
compute the elastica for the varying load pa-
rameters p with the load position parameter «
=0.3. Here the end rotations 8. and & hori-
zontal reaction component h, maximum bend-
Ing moment Mm.,, maximum deflection 7max
and beam’s arc length A... were evaluated.

Table 1 Comparisons of responses reported in
references to the present results(p==6.)

psition | data b ts A
parameter| SOUrce | stable iunstable| stable |unstable| stable |unstable

present | 04134 | 0.8013 | 0.3126 | 0.6804 | 1.0333 | 1.1534
a=025 | ref[6] | 0.4134 | 08012 | 0.3126 | 0.6804 | 10333 | 11534
ref[7] | 04134 | 0.8011 | 03126 | 0.6804 | 1.0333 | 11534
present | 0.4708 | 0.8760 | 0.4708 | 0.8760 | 1.0617 | 1.2391
a=05 | ref[B] | 04708 | 0.8760 | 0.4708 | 0.8760 | 1.0617 | 1.2391
ref (7] | 04708 | 0.8760 | 04708 | 08760 | 10617 | 1.2391
present | (.2496 | 1.1634 | (.3453 | 12991 | 1.0221 | 1.5693
a=075 | ref[6] | 02496 | 1.1634 | 0.3452 | 12991 | 1.0221 | 1.5593
ref{7] | 0.2496 | 11634 | 03453 | 1.2991 | 10221 | 15593

* Amex=non-dimensional arc length
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These results are shown in Figs. 2-4.

From all these figures, it is seen that each
load parameter p has two responses whose
one is presented as solid line and another
dashed one. This means that two shapes of
elastica are possible for a given load param-
eter p except the critical load parameter p.
=6.44 marked by in Figs. 2-4. Since a physi-
cal phenomenon will follow the easiest path
whenever there is a choice between different
paths, the shapes of elastica with the lower
responses (solid line) are stable and the oth-
ers(dashed line) wunstable in this elastica
problems. At the critical load parameter p.=
6.44, all responses are maximum so that the
elastica subjected to the p exceeding 6.44 is
impossible at the position parameter ¢=0.3.

In the third series of studies, the critical
responses Do, @i, 7msx and M. against each
a level were obtained and presented in Fig. 5
and 6. As shown in Fig. 5, it is noted that
the minimum p.=6.31 exists at «=0.37
marked by [] in this figure. On the other
hand, it is noted that maximum critical re-
sponses of @i, Muax and 7m... exist as shown
in Fig. 6. And it is concluded that the higest
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Fig. 2 8. and 6, versus p curves
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Fig. 4 7 and An.. versus p curves

values of @i, Mm. and 7., in the simple var-
iable-arc-length beam are 0.68, 0.27 and 2.51,
respectively.

Finally, the elastica with p=5. and «=0.3
are shown in Fig. 7 in which the solid and
dashed curves are the stable and unstable
configurations, respectively.

5. CONCLUSIONS

The numerical methods developed herein
for computing the elastica of simple variable
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-arc-length beams subjcted to a point load
were found to be efficient, accurate, and high-
ly versatile. The responses computed by the
present numerical methods compared favorably
with previously published results based on
more classical methods-Elliptic integral method
and Shooting optimization method.

The

curves for ¢=0.3, and critical responses ver-

responses versus load parameter
sus position parameter curves are shown in

figures. It is found that the highest values of
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Fig. 7 Example of the elastica

Br, Jmax and Mp,, in the simple variable-arc-
length beam are 0.68, 0.27 and 2.51, respecti-
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