Structure of epitaxial MgO layers on TiC(001) studied by time-of-flight impact-collision ion scattering spectroscopy

비행시간형 직충돌 이온산란 분광법을 사용한 TiC(001)면에 성장된 MgO막의 구조해석

  • Hwang, Yeon (Minerals Utilization & Materials Division, Korea Institute of Geology, Mining & Materials) ;
  • Souda, Ryutaro (National Institute for Research in Inorganic Materials)
  • 황연 (한국자원연구소 자원활용소재부) ;
  • 소다 류타로 (무기재질연구소)
  • Published : 1997.08.01

Abstract

Time-of-flight impact-collision ion scattering spectroscopy (TOF-ICISS) was applied to study the geometrical structure of epitaxially grown MgO layers on a TiC(001). The hetero-epitaxial MgO layer was able to be deposited by thermal evaporation of magnesium onto the TiC(001) surface and subsequent exposure of oxygen at room temperature. A slight heating of the substrate at around $300^{\circ}C$ was necessary to overcome a thermal barrier for the ordering. The well-ordered MgO structure was confirmed with the 1$\times$1 LEED pattern. TOF-ICISS was useful in studying interface structure between oxide and substrate. The results revealed that the MgO layer is formed at the on-top sites of the TiC(001) substrate and the lateral lattice constant of MgO layer is the same as that of the TiC substrate. The MgO was deposited within two layers on the most parts of the surface.

TiC(001) 면위에 Mg금속을 증착시킨 후 상온에서 산소를 노출시키는 방법으로 hetero-epitaxial MgO막을 성장시켰으며, 성장된 MgO epitaxial막의 구조를 비행시간형 직 충돌 이온산란분광법을 사용하여 해석하였다. MgO막은 산화 직후 무질서한 배열을 갖으나, 약 $300^{\circ}C$의 가열에 의해서 1$\times$1구조로 전환된다. TiC(001) 위에 성장된 MgO막은 다음과 같은 구조를 갖고 있음이 밝혀졌다. Mg 및 O원자는 TiC의 on-top site에 위치하고, 면내방 향의 격자상수는 TiC의 격자상수와 일치하며, MgO막의 대부분은 2층 이내의 원자층으로 구성되어 있다.

Keywords

References

  1. The Surface Science of Metal Oxides V. E. Henrich;P. A. Cox
  2. Phys. Rev. v.B39 P. A. Thiry;J. Ghijsen;R. Sporken;J. J. Pireaux;R. L. Johnson;R. Caudano
  3. Surf. Sci. v.233 X. D. Peng;M. A. Barteau
  4. Surf. Sci. v.319 P. Gassmann;R. Franchy;H. Ibach
  5. Phys. Rev. Lett. v.62 M. H. Yang;C. P. Flynn
  6. Phys. Rev. v.B41 S. Yadavalli;M. H. Yang;C. P. Flynn
  7. J. Chem. Phys. v.96 M.-C. Wu;C. A. Estrada;J. S. Corneille;D. W. Goodman
  8. Surf. Sci. v.312 P. J. Chen;D. W. Goodman
  9. Nucl. Instrum. Methods Phys. Res. v.B100 J. Guenster;M. Brause;Th. Mayer;A. Hitzke;V. Kempter
  10. Surf. Sci. v.279 J. -W. He;X. Xu;J. S. Corneille;D. W. Goodman
  11. Transition Metal Carbides and Nitrides L. E. Toth
  12. Jpn. J. Appl. Phys. v.20 M. Aono;C. Oshima;S. Zaima;S. Otani;Y. Ishizawa
  13. Surf. Sci. v.128 R. Souda;M. Aono;C. Oshima;S. Otani;Y. Ishizawa
  14. Phys. Rev. v.B51 R. Souda;K. Yamamoto;W. Hayami;T. Aizawa;Y. Ishizawa
  15. Surf. Sci. v.140 H. Niehus;G. Comsa
  16. Surf. Sci. v.166 H. Niehus
  17. J. Cryst. Growth v.92 S. Otani;T. Tanaka;Y. Ishizawa
  18. Surf. Sci. v.191 H. Onishi;C. Egawa;T. Aruga;Y. Iwasawa
  19. Surf. Sci. v.131 O. S. Oen
  20. Appl. Phys. Lett. v.49 B. W. Dodson;P. A. Taylor
  21. Jpn. J. of Appl. Phys. v.36 Y. Hwang;R. Souda;T. Aizawa;W. Hayami;S. Otani;Y. Ishizawa