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Breakdown Points of Direction Tests

Kyungmee Choi !

ABSTRACT

We briefly review three Raleigh type location tests based on direc-
tion vectors, which have been shown to be efficient when the distribu-
tion is unknown, skewed, or heavy-tailed. Then we calculate their test
breakdown points and discuss the robustness of Randles multivariate
sign test for one-sample.

Key Words : Level breakdown point; Power breakdown point; Sign test;
Wilcoxon rank sum test.

1. INTRODUCTION

Multivariate multisample location tests for one sample or several samples
have always been important to many statisticians and engineers especially
when the distribution of data is unknown, skewed, or heavy-tailed. We briefly
review these location tests and mainly consider three direction-based location
tests for one- and two-sample cases to examine their robustness using the
concepts of test breakdown points.
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Most tests developed in earlier days for the multivariate several-sample lo-
cation problem were usually variablewise extensions of the univariate Wilcoxon
rank sum test (Mann-Whitney test) or Kruskal-Wallis test (Friedman test).
As affine-invariant tests, there are tests by Randles (1989) using interdirec-
tions of vectors, Hettmansperger and Oja (1994) and Hettmansperger, Ny-
blom, and Oja (1994) using simplexes, and Chaudhuri (1992) using direction
vectors. All of these have been shown to be efficient and have been presumed
to be robust against outliers.

The three multivariate location tests based on direction vectors to be
considered here extend the sign test for the one-sample case and Wilcoxon
test for the two-sample case by substituting direction vectors for signs in
each test. Once we present them, we will examine their robustness against
outliers using the concept of level and power breakdown points defined by He,
Simpson, and Portnoy (1990). The first direction-based location test of our
interest was developed by Raleigh for the one-sample case (Watson, 1983).
Under H, : 8x = 0 and X has spherical symmetry it is
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where || - || is the Euclidean norm, and we can easily extend V* to the several-
sample case. That is the second direction-based location test of our interest.
Here we focus on the two-sample test, we call it DRT (Choi, 1995), and define
it as follows:
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Then it is asymptotically X?, under H, : 8x =0y, X andY have spherical
symmetry. Assuming the spherical symmetry for data clouds in both V* and
DRT, direction vectors of X; and Y; are i.i.d. from U niform(Q)), where Q is
the surface of the unit ball in R”.

The third direction-based location test is defined using

ZZ X Yn | (1.3)

which is equivalent to Wilcoxon rank sum test when both populatlons are
univariate. Then under the null hypothesis H, : 8x = 0y, W7 Z lw 4 X,,
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for any consistent and scale equivariant estimate of covariance matrix ¥y
and N[Zy — (1/n + 1/m)®;] % 0 from the usual U-statistic theory (Puri
and Sen, 1971), where

(1.4)

®,=E [ Zy— 2y (2, — ZS)T}

|2, — Z2|| 1121 — Zs]

and Z,, Z,, and Z; are from the same distribution as X and Y under H,. For
any consistent and scale equivariant estimate ®, of ®; we define

-1
DWT = NwW7” Kﬂ + 1_v_> éz] w (1.5)
m n

and under H, it asymptotically follows an X,Z, (Choi and Marden, 1997). Note
that it is very much straightforward to show that V* and DRT are orthogonal
transformation invariant and DW T has the same property as long as we use
a scale equivariant <i>Z. So in order to check its performance it is enough
to study distributions with diagonal scale matrix. And if Z,, Z3, and Z; are
i.i.d. from an elliptically symmetric distribution with a diagonal scale matrix,
then ®; is also a diagonal matrix (Choi(1995) and Chaudhuri (1992)).

Randles (1989) calculated asymptotic relative efficiencies of V* with re-
spect to one-sample Hotelling’s T2 as a function of p and a parameter of the
distribution heaviness in its tail. Choi (1995) shows that DRT has the same
asymptotic efficiencies relative to two-sample Hotelling’s statistic as that of
V* relative to one-sample Hotelling’s. The asymptotic efficiencies of DWT
are presented in the paper by Choi and Marden(1997).

To calculate their asymptotic efficiencies we involve the elliptically sym-
metric distribution used in Randles (1989), which has its probability density
function as follows:

flz—0)= kplzl—;— exp (—[(z - e)Tz_l(‘T - 0)/011]”) (1.6)

for x € R?, where

C

) I O
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In this density function, ¥ denotes a scale matrix, R? denotes the Euclidean
p space, and v is a tail shape parameter. If v = 1 it is a normal distribution,
if v < 1 it is heavy-tailed, and if v > 1 it is light-tailed.

(1.7)

K
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According to calculation results by Randles (1989), Choi (1995), and Choi
and Marden(1997) assuming the scale matrix as the identity we see that
when the distribution is heavy-tailed, all the three tests (V*, DRT, DWT)
are more efficient than corresponding one- or two-sample Hotelling’s 7% and
when the distribution is light-tailed, they are a little bit less efficient. However
Randles (1989) showed that when the distribution is light-tailed or normal the
asymptotic relative efficiency of V* with respect to T'? increases and converges
to 1, and when the distribution is heavy-tailed it decreases and converges to
1. Since V* and DRT have the same asymptotic efficiencies, we can apply
the same results to DRT. Choi and Marden (1997) show that the asymptotic
efficiencies of DW T relative to two-sample Hotelling’s statistic has similar
increasing and decreasing tendencies as those of DRT.

In section 2, as measures of test robustness some definitions of test break-
down points are presented. In section 3, we calculate breakdown points of
Raleigh’s Statistic, and section 4 is about Raleigh type multivariate two-
sample test DRT. Section 5 calculates those of DWT. Note that since
V*, DRT, and DWT are multivariate versions of one-sample, two-sample
sign tests and Wilcoxon test, we might expect V*, DRT and DWT to have
the same breakdown points as those of one-sample, two-sample sign test and
Wilcoxon test respectively. So, we will show that level and power breakdown
points of both V* and DRT are 1 and .5 respectively. The level breakdown
point of DWT is 1 and its power breakdown point is .5 when two samples
are jointly contaminated, and at least .2929 when two samples are separately
contaminated. In section 6, there is a discussion on the robustness of Oja’s
spatial median and this leads us to conjecture the robustness of Randles’ Sign
test, which will be left for the future study.

2. LEVEL AND POWER BREAKDOWN POINTS

In this section, as measures of the stability of tests, resistance to rejec-
tion and acceptance (Ylvisaker, 1977) and level and power breakdown points
(He, Simpson, and Portnoy, 1990) are explained. First, we use T(:) as a
functional, that is, a mapping from the space of all distribution functions
to R'. Ylvisaker (1977)’s resistance to acceptance is a finite sample notion.
For a sample X1, -+, X~ € R? Ylvisaker (1977) considers tests with critical
regions {T(Fy) > cy }, where Fy is the empirical distribution, and defines re-
sistance to acceptance (rejection) of the test as the smallest proportion m/N
for which, no matter what X, 41, -, Xy are, there are values X;,---, X,
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with T(Fy) < ey (T (Fv) > cy). According to his work for the one sample
Hotelling’s T2, resistance to acceptance is 1/N and resistance to rejection is
cx /(1 + ¢y ) or approximately (1/N)x2(a). ,

Given a distribution F, let us define Q (F) = {(1 — ¢)F + G} as a
neighborhood of F and T(Q.(F)) as the set {T(H),H € Q.(F)}. Q.(F)
increases from Qq(F) = {F} to Q;(F) = {all distributions} as ¢ goes from
0 to 1. Then power breakdown point ¢* of T is defined as sup, inf.{e > 0 :
T(F,,) € T(Q.(Fy)) for some 6 € ©}. The level breakdown point €™ is
defined as sup, inf {e > 0: T(Fy) € T(Q.(Fy,)) for some 6, € ©}. He, et al.
(1990) show that for a univariate sample location test, the breakdown function
of the sign test uniformly dominate that of the Wilcoxon rank sum test (W),
and the sign test (S) is the uniformly most robust M test. By pointing out
that the power breakdown points of the sign test and Wilcoxon test reproduce
breakdown points of the median and Hodges-Lehmann estimator respectively,
they show that at the normal location model the breakdown points are given
by €(8) = 5, (W) =1 - /1/2 = 2929, and €"*(S) = " (W) = L.

Let us define for the two sample case that two samples are jointly con-
taminated if (X,Y) is from (1 — €)F; + G, where 6 is zero under the null
hypothesis and G is an arbitrary distribution. On the other hand we want to
say that two samples are separately contaminated if X is from (1 — €)F +¢G
and Y is from (1 —¢)F; +¢G*, where G and G* are arbitrary distributions. To
discuss the breakdown points of V*, DRT, and DW T we define V; = X /|| X ||,
R; = X/||X|| - Y/|Yl, and W; = (X -~ Y)/||X — Y| and we will use them
to define the corresponding functionals.

3. BREAKDOWN POINT OF RALEIGH’S STATISTIC

To discuss the breakdown points of V* we use V; = X/||X|| and the
corresponding functional E[V;]. The next two theorems provide the level
and power breakdown points of V* and they are the same as those of the
univariate sign test.

Theorem 1. Under the contaminated null hypothesis the level breakdown
point of V* is **(V*) = L.

Proof. Note that supy ||V;|| = 1 from above. Now let us take everything
under the e-contaminated null hypothesis. Since Ep,[V;] = 0 under the null
hypothesis, Eq_ar,+ccVs] = €Eqg [V/], whose magnitude is always bounded
by e. Therefore the level breakdown point of V* is 1.

215
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Theorem 2. The power breakdown point of V* is ¢*(V*) = 1/2.

Proof. For 0 < € < 1, Fy(z) = F(x — ), and an arbitrary distribution G,
let X be from (1 — €¢)Fy + ¢G. Then

EWV;]"EV)] = |Eq-gr+c [HX”} |2 (3.2)

i ap [X X 1
- “(1 )EFo [lelll + E [“X“J ” (33)

Here let Vy = E;, [X/||X||]] and a = E¢[X/||X]|]. Since G could be any
distribution, we put G = —F;. So |Eq-gr, +ec [ X/ X2 = (1 — 2€)2|| V]2
Then ¢ = 1/2 makes this quantity zero. Therefore ¢* < 1/2. On the other
hand, suppose €* < 1/2. Then ||(1—¢€)Vy+ea|| > (1-¢€)||Vs|| —¢||a]|. Note that
the norms of V, and a are bounded by 0 and 1. Then for ¢ big enough there
exists 0 < 6§ < (1—2¢)/(1—¢) such that (1 —¢€)||Vp|| — €|la]| > (1—€)(1-6)—¢
> 0, which means ||(1 — €)V, + eal| is always positive. Therefore the power
breakdown point €* is 1/2.

4. BREAKDOWN POINTS OF DRT

The functional for DRT can be written as the expected value of R, =
X/IX||=Y/||Y||. DRT is the two-sample multivariate sign test, so we expect
that DRT should have the same level and power breakdown point as the
univariate sign test.

Theorem 3. Under both jointly and separately contaminated null hypothe—
ses the level breakdown point of DRT is ¢**(R*) = 1.

Proof. It is similar to that of Theorem 1. )
Theorem 4. The power breakdown point of DRT is ¢*(DRT) = 1/2.

Proof. A proof for joint contamination is similar to that for separate con-
tamination. So here we stick to the case of separate contamination, which
gives us a clearer view. For 0 < ¢ < 1 and Fy(z) = F(z — 6), let X be from
(1-¢€)F +€G and Y be from (1 — €)F, + ¢G*, where G and G* are arbitrary
distributions. Then
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E[R;]"E[Ry]
= |E(q-)F+eG.(1-c)Fo+eC* [“%l-‘ ~ ”—f,—“} I|? (4.1)
X X
= - 0 [ ] +ere |
f(l — €)Ep, [ﬁ] —eEg- [W};—“] I? (4.2)
— = 9 [ - o B [ = g - 49

Let us define Ry = Er 1, [R;] and a = Eg g-[R;]. Taking G = F, and
G* = F wecanmake a = —Ry. S0 | Eq-qr+ec,a-ar+ect [X/I1X I = Y/[IYI]
(1 — 2€)%||Ry||?>. And € = 1/2 makes this zero so that ¢* < 1/2. Now suppose
¢ < 1/2. Then ||(1 — €)Ry + €| = (1 — €)||Rs|| — €lla|l. Note that norms of
‘both R, and a are bounded by 0 and 2. Then for 6 big enough there exists
0 < 6 < 2(1—2¢)/(1—¢) such that (1 —¢€)||Rol| —€llafl > (1—-€)(2—8)—2¢ > 0
which means ||(1 — €)Ry + ea|| is always positive. Therefore the power break-
down point € is 1/2.

5. BREAKDOWN POINTS OF DWT

Note that N[Ty — (1/m + 1/n)®;] 5 0 (see section 1) and W, =
(X —Y)/|IX = Y|. To calculate the level breakdown point of DWT we
use E[Wf]Tz;Vle[Wf] as the functional of DWT and to calculate the power
breakdown point of DW T we use E[W,]" ®,' E[W/] as its corresponding func-
tional. The following Lemma 1 shows that DW T can be arbitrarily large as
6] goes to co. Theorem 5 shows that when [|6]| is bounded under the e-
contaminated null hypothesis, DWT does not break down. Lemma 2 shows
that E[W,] and E[W;]T®,;' E[W,] have a common power breakdown point.
The last two theorems discuss the power breakdown point of DWT when X
and Y are contaminated separately and jointly, respectively.

Lemma 1. Under any contamination Xy, is positive definite as long as
Coup, (W;) is positive definite. Moreover if ||0| goes to infinity then at least
along some path Ly, tends to zero so that sup, E[W,]TZ;VIIE[WI] = 0.

217
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Proof. Assume that Couv., (W;) is positive definite for given 6 such that
||8}| < oco. In this proof we focus on joint contamination for simplicity. So, let
the underlying distribution be (1 — €)F, + ¢G, where Fjy is the joint distribu-
tion of (X,Y) from the null or alternative hypothesis and G is an arbitrary
distribution. Then we have

Covi—ypy+ea(Wy)
= Eq-or+cWiW/] = En-gr+cWilBa-ar+c W] (5.1)
= (1 — €)Covp,(W;) + (1 — €)Ep, [W;|Ep, [W/] 4+ eCovg (W)
+eEg Wi EcW/[] — (1= €)*Ep, [W/]Er, [W]]
(1 = By, W) B W)
—e(1 — ) Eg[W,)Ep, W] ]~ €E6[W,|Eg (W] (5.2)
= (1 - €)Covp,(W;) + eCovg (Wy) + €(1 — €) (5.3)
x (Er, W/ |Er, W]] = Ex,|W/|Ec[W]]
—Eg[W/(]ER, W]] + Ec[W/]Eq [WfT])
= (1= €)Covp,(W;) + eCovg(W;) + €(1 — ¢)
x(EF,[W(] — Ec W) (ER, [W/] — E¢[W/])" (5.4)
> (1 — €)Couvp, (Wy). | (5.5)

These equalities and inequalities show that the Xy, is positive definite
under the contaminated null or alternative hypotheses since the last term
is positive definite. Now suppose ||8] goes to co. When p = 1, E, [W;] =
Epe [sign(X —Y)] is bounded for any Fy. And Varg, (W;) =1- [Epe(sign(X—

Y))]? approaches to zero as | | goes to co. When p > 2, Ly, = Ep, [W,W/]
— Ep,[W;] Er,[W;]". Note that under H,, as k — oo we can find a sequence
of 0y such that [|6)|| — oo at least along some path. Then W, = (X =
Y +64y) / |X =Y + 64)l| converges to L = limg_o 01y / |01l for each
X and Y. Since lim;_,q Eps(k)[Wfo] = Ep, [hmk_.oo (X — Y +0uy) /

EFa( o [Wf] = Epo[hmk_,oo (X Y + e(k)) / ”X Y + 9 “] = L EWI

LLT — LLT = 0. Therefore E[W,]T T,/ . E[W;] — oo as [|0)|| — oo

Theorem 5. Under both separate and Jomt contammatlon the level break- -
down point of DW T, e**(DWT) = 1.

Proof. Under the e-contaminated H,, both W, and E;Vlf are bounded. There-
fore DWT cannot be arbitrarily large with € < 1.
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Lemma 2 implies that unless ||E[W,]|| — 0, E[(W;|"®,'E[W;] does not
vanish to zero. On the other hand, if E[W/] goes to zero, then E[W,]"®;' E[W/]
goes to zero since ®; is bounded. Therefore the breakdown point of |E[W /]|
is that of E[W,]" ®,'E[W,]. Next two theorems present two different power
breakdown points of DW T, one for separately contaminated distribution and
another for jointly contaminated distribution.

Lemma 2. E[W/[]|®,'E[W,] > |E[W/]||?, where ®; = E[(Z, — Zz)/”Zl
Zo\| (21— Z3)" ||Zl—Z3||] forii.d. Z;, Z, and Z; from an elliptically symmetric
distribution with a diagonal scale matrix.
Proof. Note that E[W,]"®;'E[W;] > 1/An. (2 EW/]|I*> > | EW, ]|
since the maximum eigenvalue of ®,, that is, Apur (®;) is positive and bounded
by 1 from above. These inequalities hold because when Z;, Z,,and Z3 are t.i.d.
from an elliptically symmetric distribution with a diagonal scale matrix, o,
is also a diagonal with all the elements less than 1 (Choi and Marden, 1997).
Theorem 6. Suppose two samples are contaminated separately. Then the
power breakdown point of DWT is at least 1 — /1 /2.

| Proof. Let Wo = EF,Fo [Wf], a; = EG,Fg [Wf], ay = EF,G‘ [Wf], ,3 =
EG,G‘ [Wf], Then

“E(l—e)F+eG,(l—e)Fg+eG‘ [Wf]“
= |1 — €)Wy + €(1 — oy + (1 =)oz + €’ B (5.6)
> (1 - eIWoll — (1 = ©)llen ]l — e(1 = lleall = €181l (5.7)

Ife<1—4/1/20r¢, = 2(1—€)?—1> 0, then choose ||0]| big enough so that
HW9” >1—6forsome( < é<e /(1 - 6)2 < 1 so that “E(] ) F +€G,(1—€)Fo+eG*
Wil = (1-68)(1—€)? —2e(1—€) - €2 > 0. Thus the power breakdown point

of DWT is at least 1 — 4/1/2.

Theorem 7. When two samples are jointly contaminated, the power break-
down point of DWT is 1/2.

Proof. Let W, = E, [W;] and a = Eg[W/]. Then

|Ea-or+ac Wil = (1= eEr W, + eEc[W/l (5.8)
(1 — €)Wy + eal|. (5.9)
For the least favorable case, we can take a to be the opposite direction of

. That is, a = —W, by taking X¢ = —Xp, and Yo = —Yp, — 6. Then we
have ((1 =€) — €)||Ws|| = 0, or (1 —2¢) = 0 so that " < 1/2. But if e < 1/2,
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IEq-op+ec (X =Y)/IX =Y]Il =2 A—e)Well—ella]l 2 (1-€)(1-86)—€ >0
for sufficiently large ||8|| such that ||[W,|| > 1-6and 0 < § < (1—2¢)/(1—¢) <
1. Thus ¢* =1/2.

6. DISCUSSION AND CONCLUSIONS

Based on Raleigh’s V*, Randles (1989) developed a multivariate sign test
V., for the one-sample case introducing interdirections between vectors. As-
suming that observations are i.i.d. from an elliptically symmetric distribu-
tions with pdf (eq. ??) he represents X,,---, X, with elliptical directions
and lengths of vectors. Let Uy,---,U,, be i.i.d. from Uniform(Q?), where 2
is the surface of the unit ball in R?, and Ry, - -, R,, be any positive random
variables in R!. Let D be any non-singular matrix. Note that E{U;] = 0
and Cov(U;) = I,/p for ¢ = 1,---,m. Then under H,, X; = R,DU, for
i=1,---,m and '

Vo =p/mY_ Y cos(mpy;) (6.1)
i=1j=1
where H.+d
Ai. — ij m 2
P4 = "C(m, p) (6.2)

if i # j, and 0 otherwise. Here C(m,p) is "m choose p” and H;; is the
interdirection defined as the number of hyperplanes formed by the origin and
other points (not X; nor X;) such that X; and X; are on the opposite sides
of the hyperplanes formed. The d,, is a correction factor defined as follows:

_ C(m,p—l)-—C(m—Z,p—l).

dm
2

(6.3)
Then since p;; is a consistent estimate of arccos(UIU,)/m, V* and V,, are
asymptotically equivalent. So, V;, is asymptotically as efficient as V" rel-
ative to one-sample Hotelling’s T?. Moreover under elliptically symmetric
distributions V,, is distribution-free since it uses only discretized (or ranked)
direction vectors. Thus it seems that Randles multivariate sign test for the
one-sample case is very robust against outliers and we might rush to conclude
that Randles’ sign test is as robust as Raleigh’s. However this conjecture is
full of doubt. ' )

It is not quite easy to calculate the power and level breakdown points of
Randles multivariate .sign test V,, since it employs a bunch of hyperplanes
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formed by p — 1 vectors and the origin. Note that V,, and a spatial median
defined by Oja (Oja 1983, Small 1990) share one common thing, that is,
employing hyperplanes (or simplexes). Even though this property provides
very good aspects to both of them, it lowers down their breakdown points.
Niinimaa, Oja, and Tableman (1990) points out that employing a simplex
formed by p data points and the global location estimate leads the Oja’s
spatial median to have a very low breakdown point, 2/(m + 2), where m is
the sample size. So we conjecture that the Randles multivariate sign test is
very vulnerable to outliers.

We can apply the same idea of involving interdirections to Raleigh type
statistic for the several-sample case. For instance, in the two-sample test
DRT (eq.1.2) all the products of direction vectors of three summations can
be replaced by cos (interdirection between X — 6 and Y — 6), where 4 is the
global location estimate of two populations. Note that this statistic should
involve the global location estimate in addition to a bunch of hyperplanes.
So, it is not easy to find its corresponding functional and its test breakdown
points. Picking a robust global location estimate is another difficulty that
Randles type tests confront for the several-sample problem.
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