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ABSTRACT

It is demonstrated that many standard nonparametric test such as
the Mann-Whitney-Wilcoxon test, the Fisher-Yates test, the Savage
test and the median test are admissible for a two-sample nonparamet-
ric testing problem. The admissibility of the Kruskal-Wallis test is
demonstrated for a nonparametric one-way layout testing problem.
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1. INTRODUCTION

Although some optional properties of the standard two-sample nonpara-
metric test are known, see Ferguson (1967) and Lehmann (1986), their admis-
sibility has been an open question (see, for example, Ferguson,1967, p252). In
this note we prove the admissibility of certain linear rank tests which include
the Mann-Whitney-Wilcoxon test, the Fisher-Yates test, the Savage test and
the median test. Recently the admissibility of certain estimators have been
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demonstrated for various nonparametric problems, see for example Cohen and
Kuo (1985), Brown (1988), Meeden et al (1985) and Meeden et al (1989). In
all these cases the admissibility for the nonparametric problem follows easily
once admissibility had been demonstrated for a related multinomial problem.
As we shall see the same strategy works for testing problems as well. We note
that a two sample linear rank test can be considered as a test for a certain two
sample multinomial testing problem. For this multinomial testing problem
its admissibility follows from the results of Matthes and Truax (1967) from
which its admissibility for nonparametric problem follows.

2. THE RESULT

We consider a two-sample proBlem where X = ( X;,..., X )and Y =
(Y1,...,Y, ) are independent random samples from unknown distributions,
F and G respectively. For the nonparametric problem, v = (F, G) is assumed
to belong to I', the cartesian product of the set of all possible distribution
functions on the Real numbers with itself. We consider testing the hypothesis
H: v € T, against K: v € T, where I', = {(F,G) : F(z) = G(z) for all z}.
Note a test ¢ is said to be admissible if there does not exist a test ¢’ such
that E,¢' < E,¢ for v € [, and E,¢' > E, ¢ for v ¢ T, with at least one of
the two inequallities being strict for at least one value v.

For this two-sample problem (X(l), .. ,X(m)) and (Y(l), - ,Y(n)>, the two
vectors of order statistics for the two samples, are a complete and sufficient
statistic. Let (Ri,...,Rm,Rm+1,---1Rm+n) be the set of ranks, i.e. Ry <
R, < ... < R,, are the ranks of the order statistic of the X;’s in the total
sample of N = m + n observations and R,+1 < Rni2 < ... < Ry are the
ranks of the order statistic of the Y;’s. We consider a linear rank statistic
L =YY, ca(R;) wherea(l),...,a(N) and cy,...,cn are sets of N constants
such that the numbers within each set are not all the same. The a(i)’s are
called the score and the ¢;’s the regression constants. We can generate various
statistics by choosing the a(i)’s and c¢;’s appropriately. For example ife; =0
fori=1,...,mand1fori =m+1,...,N and a(i) =i fori=1,...,N
then L becomes >°7_; R, wWhich is the well-known Mann-Whitney-Wilcoxon
statistic or rank sum statist.

Next we consider the appropriate two-sample multinomial testing prob-
lem. We suppose that the X,’s and Y,’s can only take on k distinct values
which without loss of generality we assume to be 1,2...,k. Let P(X; =
i) =p;and P(Y, =i) = ¢, fori =1,...,k where 0 < p; < 1,0 < ¢; < 1,
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and ¥ ,p, = 1 and ¥/, ¢ = 1. We assume the probability vectors p=
(p1,...,px) and g= (q, ..., q:) are completely unknown and we wish to test
H: p = q against K: p #q. Fori = 1,...,k, let t; be the number of X;’s =i
and s; be the number of Y;’s = i. Now the t;’s and s,’s are jointly complete
and sufficient for p and q and joint probability function is proportional to
(Hle pﬁ‘) (Hle qfi) which can be rewritten as

foo(tiu) = c(w, 8 t, u)et‘”“o

where forj = 1,...,k—1, 6; = log(g;/qx), w; = log((p;/a;) / (Px/ax)))+ u; =
tj+s;, tw= E 1t,w; and uf = Ef‘l u;6;. Since p = q if and only if w = 0,
our testing problem can be reformulated to testing H: w = 0 against K: w # 0
where 6 is a vector of nuisance parameters. The following lemma gives a
sufficient condition for tests based on a linear rank statistic to be admissible.

Lemma 1. For testing H: w = 0 against K: w # 0, a test which rejects H if
and only if %" c;a(R;) is greater than k; or less than k; where k; > k; is
admissible if the ¢;’s are constant over each sample, i.e. ifc; =cy =--- =¢,
‘and ¢p41 = Cmi2 = = Cmdn-

Proof. Suppose the two samples contains u; 1’s and u; 2’s and so on. Then
each 1,2...,k in the sample has rank

’U,1+1 ’Uq'}‘l ’U,3+]. uk+1
5 uy + 5 5 O B e ol 17 S W 5

respectively. Thus L becomes

[ = (u1+1>

m+3)
Zc,-{— Z c,}

i=m+1

Us + 1 ty+t2 m+s1+32
re(w+2) | X et 3
' i=t1+1 i=m+s+1

Uk+1
a(U1+"'+uk-1+ 2 )

i=t; 4+t +1 m+s1+-+3p_1+1

= a (ul ;- 1) [ticr + (v — t1)Cm+1)]
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uy; + 1
+a (Ul + 22 > [tac1 + (ug — t2)em 4]

+1
+a<u1+---+uk_1+uk2 )

k-1 k-1 k-1
x [(m - Zti) c1 + (N — D i Zt,i) cm.H} (2.1)
i=1 i=1 i=1

Note that for each fixed u;, - -, ux_1, the a’s are constant and L is a linear
function of ¢, - - -, t,_,. Because we reject the null hypothesis if L is too large
or too small, the acceptance region of the test is convex in ty,---,t;.1, for
each set of fixed u;’s. Hence the linear rank test has convex acceptance section
and is admissible by the results of Matthes and Truax (1967).

Let ¢, denote a linear rank test which satisfies the conditions of the lemma.
Note that neither the size of k nor the assumed values 1,2, ..., k play any role
in the proof, i.e. ¢, will be admissible for all such two-sample multinomial
problem. The admissibility for the two-sample multinomial problem follows
easily from this fact.

Theorem 1. Let ¢, be a test based on a linear rank statistic which sat-
isfies the conditions of the lemma, then ¢, is admissible for the two-sample
nonparametric problem.

Proof. We will assume ¢, is not admissible for the nonparametric problem
and get a contradiction. :

If ¢, is not admissible for the nonparametric problem, then there exists a
test ¢ such that ¢ dominates ¢,. Hence there exist zy,...,Zn, y1,...+Yn such
that

¢o(xls"'axm,ylﬂ"'ayn) #qs(ml,"-?mm)yl)"'vyn)

Let ay, ..., a; be the k-distinct values which appear in the set {z1,...,Zn,
Yi,--.,Yn} and let T'(ay, ..., a;) denote all distribution functions which con-
centrate all their mass on ay, ..., a;. We now consider the testing problem H:
F = G against K: F # G where F,G € I'(ay, . .. , o). In this case z1;..., T,
and yi,...,y, are the outcomes for the random samples from multinomial
(1,p1,...,px) and multinomial (1,q1,...,qc) where p; = Pr(X = a;) and
¢ = Pr(Y =a;) fori =1,2,...,k. Note that I'(ay,...,ax) is equivalent to
the (k — 1)-dimensional simplex. '

I'={p=(p,--»m);0<p <1 fori=1,.k and S5, p; =1}
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and each p € I' determines a unique F, say F,.

Without loss of generality we may assume ¢ is also a function of the com-
plete sufficient statistic (¢;,...,%,_1) and (s;,...,8,_1). Since ¢, is admissible
for the multinomial problem it must be the case that

E(pyq)(ﬁo —_— E(pq)¢ for all P. g € I,

Hence by completeness Pp q) (¢, = ¢) = 1 for all p, ¢ € I'! which is a con-
tradiction.

Remark 1. As we have noted the Mann-Whitney-Wilcoxon test satisfies the
conditions of the lemma and hence admissible for the two-sample nonpara-
metric testing problem. It is easy to check that the Fisher-Yates test, the
two-sample median test and the Savage test also satisfy the conditions of the
lemma and hence admissible for the two-sample nonparametric problem.

We conclude by noting that this technique extends easily to multi-sample
problems. In particular we will demonstrate the admissibility of the Kruskal-
Wallis test for the one-way layout problem.

Suppose that X1, -+, X1a,, X215+ Xo1,- - - » Xun, arev independent ran-
dom samples from F, Fs,..., F,, respectively. We will consider a test H:
Fy = ... = F, against K: F; # F; for at least one ¢ # j. Let R,; be the
rank of X;; in the combined samples and let R; = 3 7%, R;; and R, = R;./n,.
Then under the null hypothesis, it can be shown that E(R,.) = (N +1)/2 and
Var(R ) = (N —n;)(N +1)/12n,;, where N = Y_!_, n,. Thus the difference
R, — (N +1)/2 represent the departure of R, from its expected value and
we could reject the null hypothesis if the accumulated departure is too large.
This suggests a test statistic of the form

5 N+1
W = ¢
s (i)

where c;,...,c, are constants which are chosen so that W has a convenient
distribution. One such statistic is the Kruskal-Wallis statistic. Kruskal and
Wallis (1952) chose ¢; = 1—n;/N so that the limiting distribution of W would
be chi-square with v — 1 degrees of freedom.

As before, we begin with the multinomial problem. For convenience we
will only consider the case v = 3.

Let Xi11,..., X1, Xo1,---,X2n,, and X31,..., X3,, be independent ran-
dom samples from multinomial(1, p,), multinomial (1, p,), and multinomial
(1, ps), respectively, where p, = (pi1,...,pix), © = 1,2,3. We will test the null

227
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hypothesis H : p, = p, = p; against the alternative hypothesis K : p, # p;
for at least one i # j.

The joint probability distribution of the X;;’s is

ny_ mn3

f(zllv CO al'3n3§PlaP21P3) - c(nl’ na, n3)p7llkp2kp3}.

3 k-1
X exp {ZZt,, Pu }

i=1 =1

where t;, is the number of observations in the [-th category in the i-th sample.
Since the exponent term can be written as

3 k-1 2 k-1
z t log Pu _ Z Z { N (log Pa Paz )}

i=11=1 i=13i=1 p3k

k-1
+ (tu + t21 + t31) lOg Bgl—,
=1 P3k

we can rewrite the probability function as follows.
f(t,u;w,8) = c,(n1, n2, n3) exp {tw + ub}

where tw = Y2, S tawa, wy = log ((pa/ps) / (P1x/p3c)), wi = tu + ta +
tar, 0 = log (psi/psr) and ub = [ wb,.

Now the original testing problem is equivalent to H : w = 0 against
K : w # 0 and by Matthes and Truax (1967) we will be done if we can
show that W is a convex function of ¢,1,...,t1k—1,%21,- - ., tox—1 for each fixed
uy,...,ur_1, because the acceptance region of the test is given by W < ¢ for
some constant c.

Note that

W= mﬁ—l)z (E - —2—)2

— ~-3(N+1
N(N + 1) Z ( )
where N = n; + ns + n3. Thus if we show that 21-3:1 R?%/n; is a convex
function of t11,...,t1k—1,%21,. .. ,t2x—1 for each fixed u;, ..., ur_1, then we are
done. Since each 1,2,...,k has rank (u; +1)/2,u; + (ug +1)/2,u; + ug +
(us +1)/2, ..., 252 w + (ug + 1)/2, respectively,

uk-{-l

) fori=1,2

1
R, =1, (ul;- ).+...+tik (’U.1+...+’U,k_1+
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and
Rj. = (uy—tii—ta) (u1;—1 Uk;— 1) '

Clearly, for fixed u,,...,ur_1, Ri. isa linear function of t11,....t1k-1, Ra.
is a linear function of ¢y, . .., t2x—1 and R3. is a linear function of ¢35, ..., t1x-1
and to1,...,t2r_1. i.e. the R, ’s are convex functions. Hence by a standard
argument, see for example, Roberts, A. W. and Varberg, D. E. (1973) pp.
15-16, we see that 3°°_| R2/n; is a convex function and we are done.

>+~ oA (uk—tie—tax) (U1 + ..ot upog +
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