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Abstract

In queueing theory, polling systems have been widely studied as a
way of serving several stations in cyclic order. In this paper we consider
Markov-modulated Poisson process which is useful for approximating
a superposition of heterogeneous arrivals. We derive the mean waiting
time of each station in a polling system where the arrival process is
modeled by a Markov-modulated Poisson process.
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1. INTRODUCTION

A polling system consists of a single server shared by multiple stations(or
queues), and each station is served in cyclic order. It has been extensively
studied by many researchers from various fields, and has been employed in
many computer and communication systems. However, most analysis of
polling systems has been focused on Poisson arrival processes. See Takagi
(1986) for the literature on the analysis of polling systems in this case.

In this paper, we consider a polling system whose inputs consist of a
superposition of heterogeneous arrivals. Examples of such arrivals include
packetized voice sources with data traffic. This input process can possess
correlations in the number of arrivals in adjacent time intervals, which can
significantly affect queueing performance. These correlations result from the
fact that the aggregate voice packet arrival rate itself is a stochastic process
obtained by modulating the individual voice source packet rate by the number
of voice sources in their talk spurt, which itself is a correlated process. Even if
a component voice process is approximated as a renewal process, with deter-
ministically spaced packets during a talk spurt followed by an exponentially
distributed silence period, the superposition process is a complex nonrenewal
process. Thus, an exact analysis of the system is intractable. Heffes and
Lucantoni (1986), among others, introduce a way of approximating this su-
perposition process by a simpler one, so called, 'Markov-modulated Poisson
process’ (MMPP for short). The parameters of the approximating MMPP is
obtained by matching a few lower order moments. With this approximating
tool at hand, we may focus on the analysis of the system whose inputs are
modeled by a MMPP, which constitutes the main theme of this paper.

We consider a polling system with infinite capacity where any number of
messages can be stored in each station without loss. In this case, there are
three types of service disciplines : exhaustive, gated, and limited. In exhaus-
tive service policy, the server continues to serve a station until it becomes
empty, while in gated service policy only those that are waiting at polling
instance are served. In limited service policy, the server serves a station un-
til either it becomes empty, or a specified number of messages are served,
whichever occurs first. Here we are mainly interested in exhaustive service
system, and we derive the mean waiting time of each station in this service
policy. The mean waiting time is one of the key elements in performance anal-
ysis of a network system. The results presented here provides new insights
and can also be viewed as a step toward reducing the dependence on simu-
lations, which can be expensive and typically used in studying performance
issues for this kind of problems.
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In the next section, we collect some basic facts about MMPP and polling
system which will be used in deriving the mean waiting time in Section 3.

2. SOME BASIC FACTS

MMPP is an example of doubly stochastic Poisson process where the
arrival rate itself is a stochastic process too. The arrival rate process is
determined by the state of a continuous-time Markov chain. To be more
specific, s-state MMPP means that when the chain is in state j G=1,...,s)
the arrival process is Poisson with rate J;.

We consider an MMPP where the rate process is determined by a s-
state homogeneous and continuous-time Markov chain. Let y; be the mean
sojourn time of the Markov chain at the state j(j = 1,... ,8). Then the
MMPP is uniquely defined by u; and A; (j = 1,...,s). Let N(t) denote the
number of arrivals during the time period t. Below, we will give an explicit
formula for the probability generating function of N (t) in terms of u; and
A; (7 =1,...,5). This will be one of the basic tools to be used to derive the
mean waiting time in the next section.

Let Gx denote the probability generating function of a random variable
X whose mass is concentrated on {0,1,2,...}, i.e., Gx(z) = E(2*). Also,
let «; denote the sojourn rate of the state j, i.e., a; = p;i/(p + -+ u,),
and write & = (ay,...,qa,). Let Q denote the infinitesimal generator of the
Markov chain, and write A = Diag();), e = (1,...,1)7. Then, by Neuts
(1979), the probability generating function of N (t) is given by

Gny(z) = aexp[{Q + (z — 1)A}t]e.
In the above expression, by exp(Pt) where P is a square matrix, we mean
exp(Pt) =1+ Pt+ P**/21 4+ P33 /31 + .. .

Now the infinitesimal generator Q satisfies the following two equations
(see Kleinrock, 1975; Section 2.4, for example):

a@Q =0, Qe=0.
Thus, it can be seen easily that

aexp{Q + (z — 1)A}t]e = exp[(z — 1)At]e.
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Since A is a diagonal matrix, the probability generating function Gy (;)(z) can
now be written as

Cr(z) = ga,- exp{—A;(1 — 2)t}. (2.1)

The analysis of exhaustive polling system heavily relies on the busy period
analysis. We say that a busy period of a station begins when the server starts
to serve the messages in the station. It ends when there are no more messages
left in the station. In particular, a busy period initiated by 1 message is the
busy period in the case that there is only 1 message waiting for service at the
polling instance.

Let S denote a busy period initiated by 1 message, and also let J denote
the number of messages served in such a busy period. We first give a useful
identity regarding the Laplace transform of S. For this, let Ly denote the
Laplace transform of the distribution function Fx of a positive random vari-
able X, ie., Lx(t) = [3° e **dFx (z). Furthermore, let B be the service time
of a message, and S®; k =1,2,..., be iid. S. Then one can write

SEB+8W4... 4 sWEN (2.2)

Here and below =’ denotes that the two sides have the same distribution.
Now using (2.2) one can show that

E(e™**|B =) = e " Gn(s)(Ls(t)) -
Thus from (2.1) we obtain

Ls(t) = B(e™) = S oyLp{t + 25(1 - Ls(1))} (2.3)

i=1

We conclude this section by stating an identity regarding G,. By a similar
arguments for deriving (2.3), and using the fact '

JE14J0 4. 4 gNBY)

where J®): k =1,2,..., beiid. J, one can show that

Gs(z) =2 i;ajLB{/\j(l - Gy(2))}. (2.4)
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3. MAIN RESULTS

We assume that the polling system consists of K stations and the arrival
process to each station is an independent MMPP. To state the main results,
let us introduce some notations first. We will append ¢ in all the notations
introduced in Section 2 when they are relevant to the i-th station. For exam-
Ple, A;; denotes the Poisson arrival rate of the i-th station when the Markov
chain is in the state j. Let ); be the average arrival rate of the i-th station,
ie., \; = 2 7=195i)ji. We write L;(t) for the number of messages in the i-th
station at the time ¢, and 7; for the polling instance to the i-th station. Let
Fi (-, ;1) be the joint probability generating function of L, () and Li(7),
i.e., Fr (21, 29;1) = E(zf"(r")zzl"(")).

Write R; for the reply(or switch-over) period which begins at the com-
pletion of serving the i-th station and ends at the polling instance to the
(¢ + 1)-th station. Let W; denotes the wating time of a message in the i-th
station. Write b, and bfz) for the first two moments of B;. Likewise, define r,
and r,-(2) for R;. We are now ready to state the following theorem.

Theorem. The mean waiting time of the i-th station is given by

2 5 3 .
b0 i Xl (1- B, b fis(i)
2A,(1 — /\,‘b,‘) 2A12(1 e /\,‘b,‘) Z,Ic(=1 Tk

E(Wz) =

where f;,(i) = 8—%&,1(21, 22;8) |2y =251

Remark. In the above theorem, the value of fii(3) can be obtained by solving
a system of K3 equations regarding {Fe1(G);8,k,0=1,2,... , K'}. The system
of the K3 equations turns out to be of the same form as in Takagi (1986, page
73) with all ), replaced by Ar. In particular, if all the stations are identical,
Le, when oy, = a;, A\;; =) (j=1,...,s), B, =! B, and R; =! R, then the
value of f;;(i) is given by

ful) = K§2X2(1 — Xb) N K(K —1)X3rb®  K23%p%(1 — 3p)2
1—KXb (1 — KAb)? (1 — KXb)?

where § is the standard deviation of R and X = > i=1;A;. Therefore, in the
case of identical stations, we have

82 Kr(l— b W® (GO _ 52,
By < & 4 Kr(=3b) + KX (A = 3
2r 2(1 — K \b) 2X(1 — Xb)
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where A® = 31_, o;A%.

The proof of the theorem relies on the following series of lemmas. Before
stating the lemmas we need to introduce additional notations. Let L; be the
number of messages remaining in the i-th station at the service completion of
an arbitary message in the station, and T; be the total number of messages
served in a cycle in the i-th station. Write Ti(") for the instance when the n-th
service is completed in the i-th station, and 7; for the starting instance of the
reply time from the i-th to the (i + 1)-th station. Write d; =7, — 7.

Lemma 1. The probability generating function of L; can be written as
s T;
(e
GL.(2) = Y ajiLw,en, (Vi1 = 2)) = E{Y "0}/ E(T).
j=1 n=1

Proof. We only give the proof of the first identity. The second one is given
in Takagi (1986). Note first that L; is equal to the number of arrivals while
a message stays in the i-th station, i.e. L; = N;(W; + B;). Also, from (2.1) it
follows that

E{NW:FB)\W, + B, =z} = E{z"®} = aj;exp{—};i(1 - z)z}.
j=1
The lemma now follows.

Let F}(-;i) denote the probability generating function of Ly (7:), and define
f1(4) to be its derivative at 1, i.e., fi(i) = Fy(1;4) = 2 Fi(2;4)|.=1. Then we
have the following lemma.

Lemma 2. It follows that

E{Z_': Y 2 (F(d) 1) ia,.,,LBi (1 = 2))
+{z - iajiLB.- (A (1 — z))}-

Proof. If one applies the results of the gambler’s ruin problem in Takagi
(1986, page 42) with L;(;) for the initial capital, L; (T,-(")) for the capital
remaining after the n-th game, and N;(B;) — 1 for the net gain on the n-th
game, then one gets

B3 40} = Grag (HF(E0) = 1/ (2 = Cagon (2}
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The lemma now follows from the fact that ¢ vi8)(2) = X5y ajilp {2 (1 -
z)}.

Lemma 3. The probability generating function of 7} can be written as

GTi (z) = F'i{GJi(z);i} .

Proof. If we let J,.(k); k=1,2,..., beiid. J;, then we can write
T =4 Ji(l) +--- 4 J,.(L‘(")).
This implies that
E{z"|Li(n) =k} = {G,,(2)}*,
and the lemma follows immediately from this.

The following lemma establishes a relationship between F;,(-,-;i) and
-Fz',k('7 ’7' + 1)
Lemma 4. It follows that for k #ii5,k=1,..., K
Fir(z, 2051 +1) = > auFi{Ls,((1 - z2)Aji), 221}

i=1

) i Xs:a“ajkLRi((l - Zl)’\li + (1 - Zz)Ajk) .

1=1j=1

Proof. Note first that Li(7:i+1) = Ni(R;) and L, (Tiv1) = Li(1) + N, (d;) +
Ni(R;) for k # i . Hence we can write

E{zfi("'i+l)z2Lk(Ti+l)} — E{zsz(Ti)}E{zévk(di)}E{z{Vi(Ri)zévk (1.3-')} ' (3_1)
Now since d; =, S,-(l) + .-+ S,-(L‘(T")) where Si(k);k =1,2... are iid. S, and
its Laplace transform is given by L, (t) = E{Ls, ()%}, we have
E{z* ™} =3 anB{Ls (1 - 2)2)"3 . (3.2)
i=1

Similarly, we have

E{z) R MRy D> anauLe, (1 — z)As + (1 - 22)k).  (3.3)

=1 j=1

The lemma follows from (3.1), (3.2) and (3.3).
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Lemma 5. It follows that for k # 4;¢,k,=1,..., K

G+ = rde+ fi(d) + bide fi(1)/ (1 — biXe)
f1(1’ + 1) = 'r‘iS\i .

Proof. For k # i, by differentiating both sides of the equation in Lemma 4
with respect to z;, we get

0
iGE+1) = o k(21,2051 + 1)z =2p=1
= z:o‘jk(fi(i)aflc(i))("Ajkasi (0),1)Tzzaliajk
. j=1 1=1j=1

+3 i Y anap{—XixLE (0)}
j=1

1=1j=1

Now, since Y j_; @k = Lj=1 @ = Yo Ty oy =1, we have

fili +1) = L@XMES:) + feld) +ride. (3.4)

By noting that from (2.3) E(S;) = b;(1—b;X;)~!, we can establish the first part

of the lemma. The second part of the lemma follows by a similar argument.
We are now ready to prove the main theorem.

Proof of the Theorem. First, note that from the first identity of Lemma 1
E(W:) = A{G%, (1) — bk} (3.5)

Now, from Lemma 3 we have E(T)) = f:(i)E(J;), and from (2.4) we can get
E(J;) = (1 = X;)"!. Furthermore, by solving the system of K2 equations in
Lemma 5, we have

K K _
£i(6) = X1 = b)) Yo re /(1= Y beds).

Hence it follows that

K

E(T) =X\ 2_: re/(1 =3 bede) . (3.6)

=1

Let a; be the reciprocal of the right hand side of (3.6). Write d;(z) for z —
E;=1 aj,'LB'.{/\j,'(l - Z)} and 6,‘(2) for {F.,(Z,'L) ke 1} Z;=1 ajiLBi{Aji(l - Z)}
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Then, by plugging (3.6) and the right hand side of the equation in Lemma 2
into the right hand side of the second equation in Lemma 1, we have

GL.(2) = aiei(2)/di(2) .
Now since d;(0) = ¢;(0) = 0, the derivative of G, at 1 can be written as
G, (1) = a{e} (1)di(1) — ei(1)d} (1)}/{24}(1)*} . (3.7)

Note that d(1) = 1—b;A;, and that €/(1) = F!(1;i) = (1—b;A;)/a;. Also, note
too that d”(1) = —b%? Yi_1 @;:A%, and that e!(1) = F/(1;1) + 2b, A\ F!(1;4) =
fii(8) + 2b;3;(1 — b;;)/a;. Plugging all these into the formula (3.7) and then
into (3.5) establishes the theorem.
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