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Variability in Mortality Rates
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Abstract

Tsutakawa(1988) proposed a mixed model for using empirical Bayes method to
study the geographic variability in mortality rates of a disease. In particular cases of
the analysis in mortality rate, we need to consider the effect of time, If observed data
are collected annually for the time period, then time effect will be emphasized. Here,
an extended model for estimating the geographic effect and the mortality rates of the
disease with time effect is proposed.

1. Introduction

One goal of building a model is a good representation of observed data which have already
been collected. In particular cases of the analysis in mortality rate, a great deal of work has
been done with homogeneous Poisson model. Geographic variability in mortality rates has been
studied by Breslow and Day(1975) who used a multiplicative Poisson model to estimate
mortality rates for different populations. They assume that the populations are sufficiently
large and events are rare, that the data are well represented by the Poisson model. They give
a particularly simple mathematical model for the rate structure which is given as a product of
rate factor and region factor. The parameters are estimated by the method of maximum
likelihood. Osborne(1975) and Gail(1978) have also used the fixed effect muitiplicative models
to study the cancer mortality. Manton, Woodbury and Stallard(1981) proposed a mixed
categorical-continuous variable model for the analysis of mortality rates. This model assumes
that the number of cancer deaths for a group of individuals at the same risk level is a
Poisson variable and individual risks are assumed to be gamma distributed. Then the
distribution of the number of cancer deaths in a given cell is negative binomial. They used
the scale and shape parameters of the gamma distribution to explain the demographic and
geographic variability, respectively, as fixed effects. For example, period cancer mortality data
for a given population could be modeled with a gamma shape parameter which is constant
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over age and a scale parameter which is changed over age. Tsutakawa(1985) used a full
Bayesian approach to estimate cancer mortality rate of disease with its logit. Tsutakawa(1988)
used a gamma prior for the mortality rate, in contrast to a normal prior for the logit of the
mortality rate previously used. The gamma distribution is parameterized by fixed
demographic—effects parameters and a random geographic-effects parameter having an inverse
gamma prior with an unknown hyperparameter. The hyperparameter and demographic
parameters are estimated by maximum likelihood. Relative risks and mortality rates are then .
estimated by their posterior means conditionally on fixed parameters estimated by maximum
likelihood.

Brillinger(1986) suggested that the time effect can be used in extending the Poisson model
with a point process theory. Here, a nonhomogeneous Poisson gamma model based on the

nonhomogeneous Poisson process theory is derived. For the given time interval I, the

proposed model will be a good representation of observed data for expressing the variability
of the geographic and demographic effects, in addition to the time effect.

2. Model and Derivation of Estimation

This article is motivated by an earlier study of the mixed model for analyzing geographic
variability in mortality rates in Missouri by Tsutakawa(1988).

2.1 Interpretation of parameters and model

Consider | geographic regions and J demographic groups for K time intervals. Let #; be
the size of the population and v, be the frequency of death within the j-th demographic
group in the i-th geographic region for given k-th time interval. Z; is the random geographic
parameter for the i-th county and p; is the mortality rate per individual within the j-th
demographic group in the i-th geographic region for given k-th time interval.

Assume we now have demographic parameter (6y;, 0o, o) with 6,50, 6550,
0%>O;j=1,2,...,J, and random geographic parameter 2z; with 2;>0; i=1,2..,], such that
conditionally on these parameters p;; is independent gamma random variable with mean and
variance that may be expressed as

E(pil6y;, 05, 0%, 2:) = 2,6,;¢ ™" @.1)

and

Var(pl61;, 04, 0, z)= ACHN gﬁt‘)z, 2.2)
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where ¢, is the mid point of a fixed k-th time period.

Thus p; has the gamma distribution with shape parameter 072 and scale parameter

6 .. . . - . .
o%ztﬁl,-e % Assume that z; is independent and identically distributed over counties with an

inverse gamma density with unknown parameter >0 and the mean of 2; equals 1. We can

obtain the nonhomogeneous Poisson gamma model which is equal to Poisson gamma model
with 8y = 0; j=12,.,]. Also the logarithm of equation (2.1) has form of the classical mixed

linear model, since

log piik = log 6]_,' +log 2 +02;'tk +8iik.
where log z;'s are random and €;;'s are the error terms with some means and variances

structure(Tsutakawa(1988)).

2.2 Estimation

An empirical Bayes approach with the random parameter p; and 2; having a distribution
that depends on the unknown hyperparameters 6y, 8,;, o% , and 7 will be considered. After
hyperparameter is estimated by maximum likelihood estimator, random effect parameters p;;
and Z; are estimated by the posterior mean as follows

yijk‘@_ E/o?
Rk Dije + 05

E(piuelyii, 61, o, Of ,Ri)=

— Ot
where Py = 2; 65¢ .

Under the assumed model, the likelihood function of hyperparameters ¢é=( 8y, 65;, o‘f , 7)) is

given by
I J K L oot
a(Ply)= ll;ll f}l;[l kl;[lf(yiikl o2, ngo; 20e )z ndz;

where f is a negative binomial and h is an inverse gamma with E(z;)=1.

2.3 Computation for estimation of hyperparameters

The log likelihood function of ¢ is given by

I J K .
lOg Q(¢ Iy) = El 10g f11~;[1 ’;I.;Ilf(yijkl 0? y Biie 0’;2 GUe 02'“)11(2,")’)(1?,'. (23)
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The maximum likelihood estimate of ¢ will be computed by Marquardt(1963) method. The
estimation of the hyperparameter needs the calculation of multiple integrals for the derivatives
of equation (2.3) with respective to 7. We use the profile likelihood function of ¥

(Richards(1961)) : We maximize the equation (2.3) with respect to 6y, 6, and o° at fixed

value 7. Then we can select the value 7 that maximizes the profile likelihood function. The
evaluation of equation (2.3) and its derivatives require numerical integration of z. After
changing the variable of integration from z to log z, the Gauss-Hermite quadrature method is
used.

3. Numerical Example and Conclusion

The numerical example here uses female lung cancer deaths for age groups, 45-64, 65-74,
75 over, for years 1973-1984, in all counties of Missourl. The population measurements for the
115 counties are based on census reports and are those from the Missouri Department of
Health. In this model, it is difficult to get the estimation of hyperparameter based on yearly
data because of the small frequency of deaths in the yearly data. So the data are combined in
terms of three year periods.

Figure 1 shows a scatter plot of the raw annual rates of age groups per million for female
lung cancer using three periods(1973-1975, 1976-1978, 1979-1981 and 1982-1984). In Figure 1,
the observed rate shows an increasing trend with respect to age.

The maximum likelihood estimate $=(8'2, 911, 912, 913. 921, 922, 923 3') for mixed

effect model with temporal effect is obtained as follows ;

o® =0.0011921 81, =0.000758
81, =0.001128 813 =0.001168
8y =0.183109 84 =0.238777
B4 =0.215682 y=22.0.

In the case of the mixed effect model without time effect, (2.1) and (2.2) are

E(piel O, 0, 2:) = 203

and

Var(pgl O, o, 2,) = o (2;03)°

where k denotes the k-th time period, respectively.
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Figure 2 shows the comparison of the estimates of annual rates of age groups for mixed
model without time, mixed model with time and the observed rates. The estimates of annual
ra es of age groups with each model are smaller than the observed rates. The reason for this
is that the rate values of counties with large populations dominate the rate values of the
counties with small population. This is due to extra-Poisson variation of mixed model with
time effect, which cannot show up under the multiplicative Poisson model but is explained by
the randomness of p; and z, Note a slight decline in the highest age group may be due to

cohort effects of other diseases even though rates generally increase over age. So this model
should be better with respect to estimation on the annual mortality rates.
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Figure 1 : Raw rates(rate/1,000,000)
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Figure 2 : Observed rates vs Estimated rates(rate/1,000,000)
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