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Discriminant Analysis with Incomplete Pattern Vectors

Hie-Choon Chung!)

Abstract

We consider the problem of classifying a p x 1 observation into one of two multivariate
normal populations when the training samples contain a block of missing observations.
A new classification procedure is proposed which is a linear combination of two
discriminant functions, one based on the complete samples and the other on the
incomplete samples. The new discriminant function is easy to use.

1. Introduction

We consider the problem of classifying a p x 1 observation X of unknown origin to one of two
distinct populations using an appropriate classification rule. If the population x; has density

f;(X), i= 1, 2, the Bayes procedure classifies X into m; if

£,(X)
£2(X)

>, (L.1)

where c¢ is a constant which depends on the prior probabilities and costs of misclassification;

otherwise X is classified into m,. In the particular case of two populations being equally likely

and the costs of misclassification being equal, ¢ = 1.

If the populations are multivariate normal with equal covariance matrix, that is
N(g x ), (1.1) becomes, after taking logarithm,
[X_%(#(1)+#<z))]l S (W @y, 1.2)

Then the random variable,

U=[X— _% (O] 31 O, @y

is distributed as N ( 4%/2, 4%) if X comes from 7, and as N (— 4%/2, 4?) if X comes
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from m, where 4% = (p W_ @y 371, W_ @) i the Mahalanobis squared distance
between the two populations. When X comes from 7 , the probability of misclassification is
P(2/11)=Pr (U <0|Xer)=0 (- 4/2).
Similarly, the probability of misclassifying X from 7w, to 7 is
P(112)=Pr (U 20|Xem)=0 (- 4/2).
Then the optimal error rate is defined as

a=%[P(2|1)+P(1|2)]=G7(—4/2). (13)

In practice the population parameters are usually unknown. Then independent random

samples (Xli), Xz(i),..., X, )y of sizes n;, 1 = 1,2 are taken from the two
populations. When the training samples do not contain missing values, Anderson (1951)

suggested the method of simple substitution of i(i) for u © and S for T in (1.2), where

@) ()

X " and S are the usual unbiased estimators of g , 1 =12, and 2 respectively. The

statistic

is called Anderson’s classification statistic. The error rate correponding to this classification rule
is called the unconditional error rate, which is
y = LIPr(W <0l Xem)+Pr(W = 0|Xem)].
Since the exact expression for the unconditional error rate is very complicated, the conditional
. . . < - 2 . ... .
error rate is considered by assuming X ) , X ¢ ), and S fixed. The conditional probability of

misclassifying an observation X from m into 7y by W is

P,=Pr(W<0| X", X¥,8;Xen)

{ %( X—(l)_'_ X“(Z)),S—q( i(l)— —X~(2))_ﬂ(1)'s_1( X(D— -)Z(Z)) }
Similarly the conditional probability of misclassifying an observation X from 7, into m; by Wis
P,=Pr(W=0|X", X? ,5;Xem)
2 @S 71 xO_ X(Z))—%( D4 X(Z)),S_l( xO_ Y(Z))
\/7( i(l)__ i(m),s—lzs—l ( X"(D_ ‘X‘(Z))
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Hence the conditional error rate is

r"=%(P1+P2). (1.4)

In this paper we consider the situation when the training sample includes incomplete
observation vectors. Chan and Dunn (1972, 1974) presented several methods of ignoring and
estimating the values of these vectors, and used the resulting vectors in the discriminant function.

Bohannon and Smith (1975) applied Hocking-Smith (1968) estimation procedure to estimate the
parameters and compared this procedure to the standard procedure of ignoring the missing values
in the construction of the classification rule and the estimation of the error rate.

Twedt and Gill (1992) examined the impact of different methods for replacing missing data in
discriminant analysis. They concluded that the methods of replacing missing data were better
than the one of ignoring the observation vectors with missing data.

The EM algorithm consists of an iterative calculation involving two steps: i.e., the prediction
and the estimation steps.

Anderson (1957) considered the maximum likelihood estimates of parameters of multivariate
normal distributions when special patterns of missing observations are obtained in the training
samples. The estimators are then used for substituting the unknown parameters in the
classification rule (1.2).

2. Linear Combination Classification Procedure

We consider a special pattern which contains a block of missing observations. Instead of
estimating the parameters, we construct two different discriminant functions from the complete
data and incomplete data, respectively, and then a linear combination of these two linear
discriminant functions is used to obtain the classification rule.

Let us partition the p x 1 observation X as follows.

Y
x=[z]
where Y is a k x 1 vector and Zis a (p—k ) x 1 vector ( 1<k < p). Suppose random

samples of sizes m;, containing no missing values,

are available from
pd?

udd

2:)'Y Zly

Xy 25
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and random samples of sizes n;— m;, which contain only the first k-components Yj(i), =1,
2; j=m;+1,...,n;, are available from Nk(ﬂ(') 2, ). We denote by X(') i=12;
j=1,..., m;, the complete observations, and by Y; (i), i=12;3=1 ..., n;, the

incomplete observations. Hence the data have the special pattern of missing values where a block

of variables is missing on n;— m; observations, and the remaining observations are all complete.

Then the sample means are given by

vO_ 1 Sy

Yl - m; ,'Z:l Y’ ,i=12, 2.1)

< ) _ ]_ n ,(i) .

Yz - n; —m; i=§‘+l Yl , 1= 11 2) (22)

IO U RO

z¥ = 4 R zf, e 23)
Let

o _ 1 W .

Y = - [m; Yl +(n -m;) Y, ', i=1, 2 2.4)

We can construct two linear discriminant functions. The first linear discriminant function is

i=12:35=12,..., m;. We have

based on the complete observations, X;(i) ox1) i

w, = (X=X s x— 4 (XP+ X%

where
(i m, . (i)
X(l)= 1 3 X]_(l) — Yl =1, 2,
m; Z(l)

L& LW o D
=3 2 X=X XP- X/, ve=mj+m,—2.
The second linear discriminant function is based on the incomplete observations, \_f,- ® (k x 1)
i=1,2:,5=1,2,..., n;. We have
,= (Y- Y2y sty -4 (YO ¥

where Y(i) is given in (2.4), and

2 & o vy (v @y

Syy =i§1j§1 (Y) — Y ) (Yvl — Y )/Vy , uy=n1+n2 ‘2

Now we combine the two linear discriminant functions and construct the classification rule which
is a linear combination of W, and W, , namely
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W.=cW,+(1-c)W,, 0=<c<Ll (2.5)
We call W, the linear combination classification statistic. An advantage of W_ is that it is easy

to use. This classification procedure is called the linear combination classification procedure.
This classification procedure depends on the value of ¢ . The choice of ¢ will be discussed later.

The probability of misclassifying an observation from m; into 7, is given by
B/=Pr{W.<0IX em}
Similarly the probability of misclassifying an observation from 7y into 7, is given by
By=Pr{W. 201X € m}L

The unconditional error rate, with equal prior probability, is defined as

B =5 (Bi+8). (26)

In order to find the error rate B, we need to know the distribution of W. . However, this

distribution is extremely complicated. Hence we consider the conditional error rate. The
.. e . () (@ () 52 . .

conditional distribution of W_. given X(), X(), S, Y(), Y(), S,y is obtained as

follows. Let

= a X+ b=a1'Y+ 02'Z+ b,

where

a' — ( X(l)__ 'X*(Z)), S;xl ,

a: al ,

a;

b= _% (KO- xPy 2! (XP4+ XP)

Also let
= dY + e,

where

dl — ( ?(1)_ Y(Z))r S—l

yy

o= _% (YO- Y@y 51 (YO+ ¥9) .

Then

W.e=cW,+(1-c)W,
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=c(ay Y+ a,Z + D+ (1—c)(dY+e)
=A'Y +B'Z +F =H'X +F,
where
A=ca + (1—c)d,
B= cay,

=cb+ (l—c)e,
H=[‘é].

Since W.= H’X +F is a linear combination of the random variable X given X(D, X(Z), Six,

TV ¥®'s,, and X is distributed as N,(#?, %), hence W, is distributed as

’

N (H#%+F, HZH). Then the conditional probability of misclassifying an observation X

from ) into T, by W is given by

Bl=Pr(W_<0]| f(l), X(Z), Six ?(1), ?(Z), Sy X, YE ™)
e
- w(—ﬂ\/%fz;g). @7

Similarly,

1 < 2
1) Y()

B=pr(W.=20l XV X% 5., Y Y  Sy:XYem)

’ ’

(2) )
-1 — (p(__IiL_'{"_F)= (p(_I'_Ifl___ﬂ). (2.8)

VvHXH VH'YH
Hence the conditional error rate for 8 in (2.6), with equal prior probability, is defined as

B‘=% (Bri+ B3). (2.9)

Given the training samples, the conditional error rate A" depends on the value of c. The best
value of ¢ may be determined so that the conditional error rate is minimized. However, the
minimization process is very tedious and intractable. Hence we propose to use the following
value of c.

Let X(') and S,Ei) be the sample mean and sample covariance matrix of the complete

. . o (
observation vectors of sizes m; , and Y

) and Sy) be the sample mean and sample covariance
matrix of the incomplete observation vectors of sizes n; for each population 7;. Since it is
assumed that the two populations have the same covariance matrix Y , the sample covariance

matrices S,ED and S,EZ) are pooled to obtain an unbiased estimate of 2
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_ (m=DSP+ (my—-1)SP
- (m;+ m;—2)

Sx

Similarly, an unbiased estimate of X}; is

(n;—1)SP+(n,—1) P
(n;+ny;—2)

S,=

From these sample quantities, we propose to use the operational ¢’ which is given by

G
e N ENVE v T rerpsey 210
(E+E) Dx+(n_1+n—2) Dy

where
Di — ( X(I) N ‘X(Z) )’ S;l ( X(l) _ X(Z))’ 2.11)
ny — ( ?(1) . Y(Z) )’ Sy—1 ( ?(1) . ?(2)). (2.12)

The rationale of using this value ¢” is given as follows. It is known that the error rates will
depend on the Mahalanobis distance and the information from the samples. Usually the error rate
is small when the Mahalanobis distance is large or the sample size is large. The operational c*

in (2.10) can be justified in the sense of the training sample sizes of n; and m;, and the squared
distances of D? in (2.11) and Df, in (2.12). The values of m; and D2 for the complete data
characterize the performance of W, in (2.5); while the values of n; and Df,, for the incomplete
data characterize the performance of W, in (25). When D2 is much larger than Df, , it shows
that the component Z of the variable X has large discriminant power. We should use W, and ¢’

is made to be large and close to one. Similarly when m; and m, are large and near the values

of n; and n, respectively, this indicates that the numbers of observations with missing values are
small in the two samples, so W, is not as efficient as W, . Hence ¢’ is made to be large again.
On the contrary, when D? is close to Df, ( indicating Z does not provide additional discriminant
power) and when m; and m, are small, c* becomes small, and W, has a larger weight. For the
special case of n;=n, , m;=m, , ¢  in (2.10) reduces to

m, D}
mlD,z( + D?, '

*
Csg —
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3. Comparison of the Error Rates

In order to compare the different classification procedures we need to evaluate the error rates.
We evaluate the performance of the linear combination classification procedure in (25) and

compare its conditional error rate A" in (2.9) with the conditional error rate obtained by

substituting the parameter estimates into the usual linear discriminant function. Since the
distributions of the discriminant functions for the different procedures are intractable, we use a
Monte Carlo study to simulate the error rates. We found that the linear combination classification
statistic is invariant under nonsingular linear transformations when the data contain missing

observation. In view of the invariance property, we may let, without loss of generality, /.t(D =0,

u? = (4,,0,...,4,,...,01) ,and ¥ =1. Using the canonical form, we have the

Mahalanobis distance sz = (u (D—/J @y (p (1)—# @Y= 4 (1)';1 @ - Ayz 4 Azz. So
a4, = \/7,:2—:217 . LetR = llyz/dx2 , where 0 <R <1. Thus when we fix 4.2 the
parameter R changes as Ayz varies. For fixed sz, the error rates of the linear combination
classification procedure W, in (25), Anderson’s procedure, the EM algorithm, and
Hocking-Smith (AEH) procedure will be simulated as R changes from 0 to 1. < Table 3.1>

gives the combinations of the choices of k, m and A,z‘ in the simulation experiments.

The comparisons of the error rates are given in <Table 3.2> and <Table 3.3> for some

combinations of p, k, n, m, sz ,and R. The number of repetitions is 1000. We can see that

the three error rates obtained by AEH procedure are almost the same for any combination of p,

k, n, m, sz, and R. Let us now define the difference of error rates between Anderson’s

procedure and the linear combination classification procedure as

DER = [ average of conditional error rate ¥* in (1.4) obtained by Anderson’s procedure] -

[ average of conditional error rate 8 in (2.9)].
From <Table 32>, we can see that there is a point where the sign of DER changes when R
goes from 0 to 1. Let us call this point cut-off point R*. Then R” divides the parameter space

(0<R<1 into two regions with ) <R<R" and R®(R<1. The linear combination
classification procedure is better than AEH procedure if R is greater than R*. We found that R*
depends on the combination of p, k, n, m, and sz. For example, R appears to be very small
for p=5, k=1, n=20, m=10, 4,%=4 in <Table 3.2>. <Table 3.3> gives the cut-off points of R™.

From the simulations, we obtain the following properties of the linear combination classification
procedure.
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(a) For fixed p, k, n, and sz, the value of R" increases as m increases.

(b) For fixed p, n, m, and 4.2 the value of R* increases as k increases.

From the properties (a) and (b), we conclude that the linear combination classification is better

than AEH procedure for given p, n, and sz as the proportion of missing observation gets

larger.

4. Estimation of Error Rates

The performance of a classification procedure is measured by its error rate. Since error rate
depends on unknown parameters, we must estimate it by samples. We will consider the

estimates of the conditional error rate 85 in (2.9) for the linear combination classification

procedure. The algorithm of McLachlan(1980) can be extended to obtain the bootstrap estimate
of the bias correction when the training samples contain missing value. Also the leave-one-out
estimate of the error rate will be obtained. A Monte Carlo study is conducted to obtain the

bootstrap and the leave-one-out estimate of 8 for some combinations of n=20 (m=10, 18),
50 (m=10, 46), p=2, 5 (k=1, 3), 4.%= 1, 4 in <Table 3.1> with R = 0.2, 0.9. The number of

repetitions is 1000, and 300 bootstrap samples are generated for each repetition.
<Table 4.1> shows the properties of the bootstrap and leave-one—out estimates for £ in (2.9).

We summarize our findings from the Monte Carlo study as follows:

1) When n and m are moderately larger than p, ie., p=2, n=20, m=10 and 18, both
estimates appear to be nearly unbiased.

2) When n and m are sufficiently larger than p, i.e, p=2, n=50, m=46, both estimates are
improved compared to the case in 1).

3) When n and m are not moderately larger than p, ie, p=5, k=1, 3, n=20, m=10, the
estimates for the leave—one-out method generally appears to be nearly unbiased but not for the
bootstrap, specially for R=0.2. This happens since information for the discrimination depends on
the variables in which data contain missing values.

Now we consider the bootstrap confidence interval for the optimal error rate @ in (1.3), when
the data contain no missing values. The percentile method, bias-corrected percentile method, and
accelerated bias-corrected percentile method will be considered. In order to evaluate the

properties of the confidence interval for @, a Monte Carlo study is carried out. In this study,

bivariate normal random deviates are generated from 7; : N( 0, 1) and 7 : N( [ 4,,01 ", 1)
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by using subroutines in the IMSL, where sz is the Mahalanobis distance. The Monte Carlo
study is conducted for the combinations of Ax2= 1, 4, p=2, 5, and equal training sample sizes,
n; = ny, = 20 and 50 for p=2, and n; = n, = 30 and 50 for p=5. For each combination of

sample size, parameter A, and variable p, 500 iterations will be obtained. In each iteration,

5000 bootstrap samples are generated, except for p=b and n=50, in which case, 1000 bootstrap
samples are generated. In order to construct the bootstrap confidence intervals for @, we apply

Algorithm AS214 given Buckland (1985). Then the coverage probability and average length of
the confidence intervals are computed from the 500 training samples. The bootstrap confidence
intervals are compared with the jackknife confidence intervals given in Dorvlo (1992) based on the
average length and the coverage probability. <Table 4.2> shows 95% confidence intervals,
average lengths and coverage probabilities of the confidence intervals in the case that training
samples do not contain missing values.

Now we will extend the bootstrap confidence interval for @ to the case that the training

samples contain missing values. The jackknife confidence interval is not applicable in this case

because of missing values. We will consider the bootstrap confidence interval for the conditional
error rate 8" in (2.9) using W, . The conditional error rate can be estimated by substituting the

estimates 2, ;At(i) for X ¢ in (277) and (2.8). Let /Al(i) = ?(i), A ] in (2.3) and (2.4)

be the estimate of #(i).

3 ® 5 (i

) yye yye : : :
b) xc = be the estimate from the complete observations of sizes m;.

Eyyc () 2 (i)

yyc

For the covariance matrices, let

Also let 2 i(l) be the estimate from the incomplete observations of sizes n; — m; using only
Yy
the Y observations. Then for 3@ , we suggest the combined estimates,
(i) O]
m; n;—m,; (@
E(i): n; Eyyc + n; 2 z'yzc
(i) (i)
2' XycC E zze

yyi

Now the pooled estimate of the covariance matrices is given by

. n n 2
2 oo 2(1) s D2 2()
n;+ ny n;+ ny
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We will use these estimates in the construction of the bootstrap confidence intervals for the

conditional error rate 8° in (2.9) when the training samples contain missing observations. We

generate bivariate normal random deviates from #; : N (0, I) and 7, : N ( [ [4,, 4] 1) by

using IMSL subroutines. For each combination of p, k, Ai, R, n, and m, 500 iterations will be

performed, and in each iteration, 1,000 bootstrap samples are generated.

<Table 43> shows average lengths and coverage probabilities of the 95 % confidence
intervals in the case that training samples contain missing values. The bias—corrected percentile
method appears to be reasonable if we consider the coverage probabilities and the average lengths

of the confidence intervals compared to those of the other two methods.

5. Concluding Remarks

Discriminant analysis is a multivariate technique concerned with classifying a p x 1 observation
X to one of several distinct populations. In this paper, it is assumed that there are two distinct

populations which are multivariate normal with equal covariance matrix; that is, T N

( #(i), 2). If the training samples do not contain missing values, the Anderson’s classification
statistic is used to classify the observation. In this paper, we consider situation that the training
samples contain incomplete observation vectors which have a special pattern of missing data; ie.,
all missing values occur on the same variables. There are several methods to deal with missing
value in discriminant analysis. One method is to estimate the unknown parameters first, which
can be obtained by using AEH procedure. Then the estimates are substituted into the usual
discriminant functions for classification. We call these methods substitution methods for the
incomplete data. A new classification procedure in this situation is proposed. The proposed
discriminant function is a linear combination of two well defined Fisher’s linear discriminant
functions. It does not require the estimation of the missing values. The performance of this
classification rule is compared to the substitution methods. We found that the linear combination
classification is better than the substitution methods as the proportion of missing observations
gets larger. Bootstrap method is a statistical methodology using extensive Monte Carlo
simulation (Efron 1982). We use bootstrap method to construct a confidence interval for the error
rate in discriminant analysis.
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<Table 3.1>. Values of Parameters in the Monte Carlo Study

p kK n=2 n =50 n = 100
51 m.= 6, 10, 14, 18 m = 6, 10, 14, 18, 30, 46 m = 6, 10, 14, 18, 30, 46, 70, 90
A= 64,1, 4,9 16 d5= 64, 1,4, 9, 16 4= 64,1, 4,9, 16
5 1 m=10 14 18 m =10, 14, 18, 30, 46 m = 10, 14, 18, 30, 46, 70, 90
3 A%=64,1,4 0 16 %= 641,49 16 A= 64,1, 4,9 16
10 1  m =10, 14, 18 m = 10, 14, 18, 30, 46 m = 10, 14, 18, 30, 46, 70, 90
4%=1, 4 A= 1, 4 A=1, 4

<Table 3.2>. Comparison of Error Rates
p=5k=1n=20,m-=10

42 R W, (S.D) Anderson” ( S. D) H-S (S. D) DER
10 00 03827 (00463 ) 03795 ( 0.0459) 03797 ( 00459 ) - 0.0032
0.2 03804 (00429 ) 03803 ( 0.0444) 03799 ( 0.0442 ) - 0.0001
0.4 03757 ( 0.0413) 03804 ( 0.0428 ) 03794 (00424 ) 0.0047
0.6 03602 (00404 ) 03801 ( 0.0408 ) 0.3786 ( 0.0403 ) 0.0109
0.3 0,3615 ( 0.0399 ) 03799 ( 0.0387 ) 03779 ( 00382 )  0.0184
1.0 03526 ( 00405 ) 03795 ( 0.0374 ) 0.3770 ( 0.0370 ) 0.0269
40 00 02181 (00411 ) 02166 ( 0.0399) 02168 ( 0.0399 ) - 0.0015
0.2 02168 (00398 ) 02169 ( 0.0402 ) 0.2163 ( 0.0398 ) 0.0001
0.4 02108 (00348 ) 02168 ( 0.0399) 02155 ( 0.0392)  0.0060
06 02028 (00306 ) 02168 ( 0.0394) 0.2150 ( 0.0386 ) 0.0140
08 01935 (00284 ) 02172 ( 0.0388) 0.2148 ( 0.0375 ) 0.0237
1.0 01839 (00275 ) 02188 ( 0.0391) 0.2160 ( 0.0382 ) 0.0349
f

+ For each combination, the error rates and the standard deviations o Anderson and EM

algorithm are the same, respectively.

<Table 3.3>. Cut-off Point R*

p=5 k=1 m
A2 n 10 14 18 30 46 70 90
064 20 0.28 0.29 0.29 - - - -
50 0.16 0.26 0.29 0.37 0.38 - -
100 0.12 0.18 0.25 0.37 0.45 0.52 0.53
10 20 0.22 0.28 0.31 - - - -
50 0.17 0.24 0.31 0.42 0.48 - -
100 0.14 0.18 0.30 0.45 0.54 0.63 0.63
40 20 0.21 0.29 0.40 - - - -
50 0.22 0.39 0.48 0.65 0.70 - -
100 0.31 0.50 0.59 0.75 0.81 0.85 0.87
90 20 0.22 0.31 0.46 - - - -
50 0.23 0.49 0.61 0.69 0.79 - -
100 0.43 0.64 0.72 0.82 0.85 0.89 0.89
160 20 0.17 0.38 0.46 - - - -
50 0.37 0.55 0.64 0.77 0.82

100 0.43 0.66 0.73 0.83 0.88 0_.91 091
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<Table 4.1>. Bootstrap and Leave-one-out Estimates for 8"

D k 42 n m R B Boot (S.D) Leave (S. D)
2 1 1 20 10 0.2 0.3443 03317 ( 0.1188 ) 0.3331 ( 0.1255 )
09 0.3238 03313 ( 0.1092 ) 03230 ( 0.1081 )

2 1 1 20 18 0.2 0.3295 0.3246 ( 0.0844 ) 0.3204 ( 0.0839 )
09 0.3200 03215 ( 0.0792 ) 0.3148 ( 0.0806 )

2 1 1 50 10 0.2 0.3483 03370 ( 0.1231 ) 0.3407 ( 0.1253 )
09 0.3180 0.3234 ( 0.1068 ) 0.3161 ( 0.1017 )

5 1 1 20 10 0.2 0.3765 03353 ( 0.1162 ) 0.3844 ( 0.1309 )
09 0.3537 03378 ( 0.1188 ) 03618 ( 0.1221 )

5 3 1 20 10 0.2 0.3810 03331 (01189 ) 03704 ( 0.1285 )
09 0.3591 0.3315 ( 0.1190 ) 03424 ( 0.1137 )

5 3 1 20 18 0.2 0.3600 0.3396 ( 0.0849 ) 0.3450 ( 0.0888 )
0.9 0.3458 0.3370 ( 0.0681 ) 0.3265 ( 0.0840 )

2 1 4 20 18 0.2 0.1726 0.1673 ( 0.0646 ) 0.1661 ( 0.0640 )
09 0.1670 0.1662 ( 0.0623 ) 0.1620 ( 0.0617 )

2 1 4 50 46 0.2 0.1649 0.1660 ( 0.0389 ) 0.1651 ( 0.0385 )
09 0.1638 0.1630 ( 0.0387 ) 0.1614 ( 0.0389 )

5 1 4 20 18 0.2 0.1937 0.1809 ( 0.0683 ) 0.1894 ( 0.0695 )
09 0.1773 0.1746 ( 0.0665 ) 0.1733 ( 0.0644 )

5 3 4 20 18 0.2 0.1964 0.1821 ( 0.0665 ) 0.1879 ( 0.0665 )
09 0.1843 0.1781 ( 0.0679 ) 0.1710 ( 0.0656 )

5 3 4 20 10 0.2 0.2211 0.1859 ( 0.0981 ) 0.2163 ( 0.1027 )
09 0.1954 0.1806 ( 0.0925) 0.1805 ( 0.0872 )

<Table 4.2>. Comparison of 95 % Confidence Interval for a
Optimal Average Average

Error Lower Upper Average Coverage

p n A4 Rate Method” Limit Limit Length Prob.

2 20 4.0 0.1587 P 0.0619 0.2266 0.1647 86.2

B 0.0823 0.2528 0.1705 91.2

A 0.0832 0.2529 0.1697 90.0

J 0.0643 0.2517 0.1874 91.0

2 5 10 0.3085 P 0.2238 0.3670 0.1432 92.8

B 0.2370 0.3804 0.1434 932

A 0.2399 0.3804 0.1405 92.2

J 0.2319 0.3816 0.1497 934

5 30 40 0.15687 P 0.0591 0.1913 0.1322 76.2

B 0.0925 0.2322 0.1397 92.0

A 0.1031 0.2323 0.1292 88.8

] 0.0800 0.2348 0.1548 92.0

5 50 10 0.3085 P 0.2001 0.3413 0.1412 836

B 0.2381 0.3825 0.1444 91.8

A 0.2400 0.3823 0.1423 91.2

] 0.2313 0.3853 0.1540 94.2

* P = percentile method,
B = bias—corrected percentile method,

A

J = jackknife method.

accelerated bias—corrected percentile method,
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<Table 4.3>. Comparison of 95 % Confidence Interval for s
p=2 Average Average
o Lower Upper Average Coverage

n m R 4% B Method™ Limit Limit Length Prob.

20 10 08 4 0.1748 P 0.0447 0.2239 0.1792 79.0
B 0.0827 0.2766 0.1939 92.6
A 0.0914 0.2775 0.1861 76.4

20 18 08 1 0.3229 P 0.1479 0.3687 0.2208 79.0
B 0.1902 0.4082 0.2180 93.0
A 0.1937 0.4081 0.2144 78.0

5 20 03 4 0.1776 P 0.0717 0.2347 0.1630 88.6
B 0.0883 0.2529 0.1646 93.6
A 0.0978 0.2531 0.1553 87.8

5 46 03 1 0.3152 P 0.2232 0.3672 0.1440 89.8
B 0.2404 0.3843 0.1439 94.0
A 0.2406 0.3843 0.1437 89.0

*

P = percentile method,

B = bias—corrected percentile methaod,
A = accelerated bias-corrected percentile method.
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