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Some Tests for Variance Changes in Time Series
with a Unit Root

Young J. ParkD), Sinsup Cho?

Abstract

For the detection of variance changes in the nonstationary time series with a unit
root two types of test statistics are proposed, of which one is based on the
cumulative sum of squares and the other is based on the likelihood ratio test. The
properties of the cusum type test statistic are derived and the performance of two
tests in small samples are compared through Monte Carlo study. It is observed that
the test based on the cumulative sum of squares can detect a small change in the
variance faster than the one based on the likelihood ratio.

1. Introduction

Many economic time series are known as nonstationary time series with a unit root. Since
these series are observed for a long period they reflect the changes of policy and economic
system and these changes often result in structural changes such as level shifts, slope
changes and variance changes. If the impacts of those changes are overlooked in model
building, they may cause an invalid inference and provide an inaccurate forecasting. It should
be noted that the parameter constancy is a necessary condition for the accurate forecasting
and the practice of policy evaluation.

In this paper we consider the variance change problems in the nonstationary time series
models. Wichern, Miller and Hsu(1976) first considered the variance change problem in AR(1)
models using F-type test. Based on the likelihood ratio test Ryu and Cho(1987) also
proposed a detection procedure for multiple variance change points In AR(1) models.
Tsay(1988) used the intervention analysis approach to detect outliers, level shifts and variance
changes in ARMA models. McCullouch and Tsay(1993) suggested a Bayesian approach for
mean and variance shifts in AR models. Incla’n and Tiao(1994) used the iterated cumulative
sum of squares algorithm to detect multiple variance change points in a sequence of
independent observations. Their approach was further extended by Kim(1996) to the ARCH
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type models,

But most of the detection procedures were developed under the stationary assumptions. If
we know that there is a variance change in the nonstationary time series with a unit root we
may be able to use one of the existing tests after the transformation of the series into a
stationary one by taking a first difference. The use of the existing tests for stationary series
is limited since it is possible to use when the series has no level or the series is to be
centered.

In this paper we propose test statistics for the detection of variance changes in the
nonstationary time series with a unit root and possibly a drift. It is shown that the cusum
type test statsitic can be used regardless of the stationarity of the series

This paper is organized as follows. In Section 2, we propose the test statistic for the
detection of variance changes based on the cumulative sum of squares(CUSUM) and based on
the likelihood ratio test(LRT) when the series contains a unit root. In Section 3, the
empirical distributions of the two test statistics are obtained and the performance of two tests
are compared through Monte Carlo study. In final section we apply the test to the Series B
of Box and Jenkins(1987).

2. Test Statistics

Consider the following AR(1) model with a drift

Yt=3+¢Y,_1+a,, t:1,...,k
1
Y,;=6+¢Y, +b, t=Fk+1,..., T,

where a, and b, are series of independent normal random variables with means 0 and
variance 0‘3 and o‘% respectively. We consider the test of Hj: oﬁ= ozb against H,: o‘i *+ 021,

in time series with a unit root, ie, ¢=1. Thus the null hypothesis is that there is no
variance change while the alternative is that there is a variance change at t=k+1. The

rejection of the null model is taken as an evidence of variance change.
For the detection of variance changes Wichern, Miller and Hsu(1976) and Ryu and
Cho(1987) used the likelihood ratio test for a stationary time series model without a drift, i.e,

#<1 and 8=0 in model (1) and Incla’n and Tiao(1994) used the cumulative sum of
squares for a sequence of independent observations, ie, ¢=0 and =0 in model (1). In

this paper we propose two types of test statistics, one based on the likelihood ratio and the
other based on the cumulative sum of squares, for the detection of variance changes in the

time series with a unit root and possibly a drift, ie, ¢=1 and &+0.
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Assuming zero initial value Yy=0 and ¢=1 in (1) Y, is represented as the partial sum

of errors so that Var(Y,)=td® is changing over time under Hj. It should be noted that

we are interested in the change of the error variance instead of the variance of Y;. Under

H, (1) can be rewritten as

Y,=6t+Y,+&, (2)
where &,=a,ta,+ -+a, since a,=b,. & is a coefficient of regressor t when we
regress Y, on ¢t in model (2). Without loss of generality the estimator of 4 is

&= tz::Ith/ tZ:‘.ltz.

2.1 Test based on the cumulative sum of squares

A k A
Define the partial sum of &; as S;= 21 g, where £=(Y,— Y,.,—8?. Replacing Y,

by ot+Y,+&, we have

Zkl(tt_é’t—l— Z‘:ltgt/ tgnltz)z

1=

k
Se= tgl ?t=

— S(a- X it 3B
=1 =1 =1 3)

= 3 a2 aX B el B+ E el B P
= 0(m)+0,1)+0,(n")

since 2a,= 0,(Vn), Sai=0,(n) and 2= Oy 7n°?). (See Bilingsley, 1968)

Define the test statistic for variance change in the nonstationary time series as follows:

CUSUMD=ﬂmaX 1€ k<n |Dkl (4)
where D,=S,/S,—k/n. If we premultiply D, by gl &,/Vn, we obtain
19 _ 1l s k1lg

D, swn-rwQ))

where WK#) is a standard Brownian motion. Expression of limiting distribution in (5) is
known as B(#)=W#» —rW1) where B(#) is a Brownian bridge. So the limiting
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distribution of test statistic CUSUMD defined in (4) is

CUSUMD £ sup g, B()

since the left-hand side of (5) is written by V(X £,/n)D,= (X &/Vn)D,. This result is

the same as that of Incla’n and Tiao(1994) and Kim(1996).
Now we consider the model without drift 8. Suppose 6=0 in (1), then the expession (3)

becomes

Se= 21 &= Ekl(a'_ g1tY’/ Zn:ltz)z
= Op(‘/;)

since Y,=¢&, under 8=0. It is not too difficult to show that the limiting distribution of the

n
(:215'/ Vn)D, is not changed whether =0 or not. This implies that the proposed test

statistic can be used whether the nonstationary series has nonzero drift or not.

Suppose we know that the series Y, contains a unit root and obtain W; by taking a first
difference of Y, ie, W,=Y,—Y,_,. If 6=0 under Hy, 2 wi=> al= 0,(n). Hence if
we let S,=2, W? we obtain the same test statistics proposed by Incla’n and Tiao(1994).
While if 0+0, > W2=2(6+a)*=0,(n) and the test statistic expressed by the function

of n X W}z has a standard limiting distribution. Hence we can not use the result of

Incla’n and Tiao(1994) any more. This implies that we need a priori information about the
presence of the drift.

2.2 The likelihood ratio test

We modify the likelihood ratio test proposed by Ryu and Cho(1987) so that it can be used
to detect the variance change in the time series with a unit root. Consider the log-likelihood

function conditional on Y] given # observations generated by model (1).

ot — AR Inog— g""( —$Y,,— )’

mnL(@= —*71 2
e 3 (Y 9Ye 1—6)2

(6)

where @=(8,d%, 5, ¢=1). For fixed k, we obtain the maximum likelihood estimators of &,
0% and o‘% as follows
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Y, ~ k ~ n
0a2=7“1*§ Z and 0,°= 1 =§:+ &

where &,=(Y,— Y, —8)?. Substituting 6=(3, 3{12, 3b2,¢=1) into (6) we obtain

InL(®") as a function of % only as follows

lnL(@')=——k—g—l—ln 5, — "gkln 6,° "51 mzn—"—gl—

We can obtain the estimator of % £, by maximizing InL(®") for 1<k<{m. Let
Gy=( 8, 02=d%=d*,¢=1) under Hy, then we obtain the LRT test statistic given by

LRT= —2In{ sup L(6,)/ sup L()}

— (=Dl & —(A=DIn 3, ~(n—F)ln 3,

L az a 2
n—1 Ezgt' =-_£_2 ?r and g, =

~2
where ¢ =

3. Power Comparisons and Results

Table 1 contains asymptotic percentiles of the test statistics LRT for some selected sample
sizes. The result is obtained from simulation based on 10,000 replications where the &, are
generated by the RNNOA subroutine of IMSL. Since the limiting distribution of the test
statistic CUSUMD is the same as the test statistic of Incla'n and Tiao (1994), the critical
values by Incla’n and Tiao(1994) will be used for the comparison. Hence we do not report
those here.

Table 1. Critical Values for the LRT based on the likelihood ratio test

Probability of smaller value
0.05 0.10 0.50 0.90 0.5 0.975 0.99 0.995

100 | 2072 2536 4997 9168 10913 12538 14702 16.649
200 | 2373 2849 5394 9875 11462 13074 15098 16.972
300 | 2558 3053 5668 10083 11724 13335 15402 16942

To examine the power of CUSUMD and LRT we perform the simulation as follows.
Samples of size 7#=100 are generated which are consisted of two separate regimes with
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different variances. We fix the the variance of the first regime 02121 and vary the variance
of the second regime o% so that we consider the following values of the ratios of the
variances, 4= o%/ @ , 0.3, 05, 08, 1.0, 1.2, 1.5, and 2.0. Three locations of the change points,
25th, 50th and 75th observations, are used and three different values of drift 0=0, 3 ,7 are

considered when ¢=1. To see the performance of the proposed tests for the stationary case

we also consider 6=0 when &=0.9. The empirical powers of the two test statistics are
obtained in Table 2 through Table 5 at the significance level 0.05 based on 10,000

replications.

Table 2. Empirical Powers of Size 0.05 Test (=0 and ¢=1)

A=dl¢ ( ¢=10)
n | B/ n | Test Type
0.3 05 08 1.0 12 15 2.0
095 LRT 1.0000 9334 .1642 0536 0854 3042 8171
' CUSUMD | 1.0000 9550 .1996 0458 0976 2896 .7330
00 | 050 LRT 1.0000 9741 1913 0532 .1097 4996 .9660
0 % CUSUMD | 1.0000 9902 2566 .0466 .2052 7314 9956
- LRT 1.0000 8722 1385 0525 .1018 .4299 9119
‘ CUSUMD 9978 6962 0978 0532 1710 6174 9692
Table 3. Empirical Powers of Size 0.05 Test (6=3 and ¢=1)
d=dld¢ ( &¢=10)
n | k/n | Test Type 2o !
03 05 08 1.0 1.2 15 20
095 LRT 1.0000 9303 .1680 .0554 .0830 3012 .8219
' CUSUMD | 10000 9550 .1978 0504 .0984 3016 .7396
050 LRT 1.0000 9710 .1932 0542 .1090 4976  .9669
100 | 999 1 cusuMD | L0000 9900 2560 0490 2068 7324 9932
- LRT 10000 8687 .1409 0552 .1030 4239 9104
' CUSUMD 9976 6900 .1112 0474 1702 6176 9674
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Table 4. Empirical Powers of Size 0.05 Test (8=7 and ¢=1)

A=dlé¢  ( &=10)
n | k/n | Test Type

03 05 08 10 12 15 20
0o | LRT L0000 9278 1613 0533 0845 2993 8195
‘@ | cUSUMD | 10000 9568 2078 0500 1100 3048 7272
0 | LRT L0000 9712 1852 0562 1160 4939 9653
100 1 999 | «hsuMD | 1.0000 9908 2440 0538 2122 7306 9950
o | LRT L0000 8662 1362 0533 0970 4255 9096
Bl cusuMD | 9970 6908 1064 0504 1768 6190 9642

Table 5. Empirical Powers of Size 0.05 Test (8=0 and ¢=.9)

A=dld ( #=10)
n k/n | Test Type

03 05 08 10 12 15 20

s | LRT 9998 9270 1677 0513 0903 3113 8399

2 | CUSUMD | 10000 9650 1998 0502 1074 3082 7448

0z | LRT 10000 9756 1947 0515 1197 5198 9652

100 | 999 1 ~ysuMD | 10000 9908 2730 0508 1984 7314 9930
o | LRT 10000 8747 1435 0522 1012 4311 9152

Ol cusuMD | 9972 6988 L1098 0540 1712 5920 9612

From Tables 2 to 5 we abserve that both tests keep the nominal levels relatively well
except few cases. In general CUSUMD performs better than LRT. Especially, when the
change occurs in the middle CUSUMD outperforms LRT. When the change occurs earlier
than the mid point, i.e., change point is at the 25th observation, LRT performs better than
CUSUMD as the variance of the second regime gets larger. On the other hand when the
change occurs later than the mid point CUSUMD performs better than LRT. Though it is

not reported in the table when 423 or 4<0.3 both tests detect the variance change
always. It is also observed that the performance of both tests are not much different as the
values of the drift & are changed from 0 to 7 when ¢=1 and 8=0 when ¢=0.9. This
implies that we can use CUSUMD whether §=0 or not in the time series with a unit root.
Also CUSUMD can be used even in the stationary case as long as d=0. But we need a

priori information about the stationarity of the time series if we want to use LRT.
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4. Real Example and Conclusions

CUSUMD test is applied to the IBM stock prices from May 17, 1961, to November 2, 1962
in Box and Jenkins (1976). The detection procedure of Incla’n and Tiao(1994) are employed
for the detection of change points. The series analyzed is the logarithm of the raw data,
Figure 1. Many authors proposed test statistics for the variance change and used the IBM
stock prices series to show the performance of the proposed tests, see Incla'n and Tiao(1994)
among others. The performance of the detection procedures are summarized in Table 6. It
should be noted that most authors applied the test to the differenced seires at lag=l. From
the previous results we know that the series has a unit root with zero drift. Hence in order
to employ the existing tests for the detection of variance change points, the series needs a
first difference. While CUSUMD can be used without taking a difference.

£ @
a
& @
2
<3
=

1081 1084 1087 1970 1973

Figure 1. Time Series Plot of the IBM Stock Prices Series

Table 6. Comparison of several detetion procedures for the variance change

Wichern Baufays Ryu Tsay Incla.’n Kim Park
change| €t al & Rasson | & Cho (1988) & Tiao (1996) | & Cho
points (1976) (1985) (1987) (1994)

180 235 235 280 181 235| 237 | 235279 | 235279 235 278

The values are the location of the variance change points detected by each procedures.
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It is observed that the detection performance using the cusum type tests of Incla'n and
Tiao(1994), Kim(1996) and ours and using the maximum likelihood estimates of Baufays and
Rasson(1985) are similar to each other while those of the other tests are different. This
implies that CUSUMD is useful when the time series contains a unit root since it can be
employed without taking a difference and can used even in the stationary case as long as it
the series does not contain a drift. On the other hand LRT requires a priori information
about the stationarity of the time series.
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