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Asymptotic Properties of Least Square Estimator of
Disturbance Variance in the Linear Regression Model with
MA (q)-Disturbances D
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Abstract

The ordinary least squares estimator S? for the variance of the disturbances is

considered in the linear regression model with autocorrelated disturbances. It is proved
that the OLS-estimator of disturbance variance is asymptotically unbiased and weakly
consistent, when the disturbances are generated by an MA(q) process. In particular,

the asymptotic unbiasedness and consistency of S? is satisfied without any restriction
on the regressor matrix.

1. Introduction

We consider the following linear regression model
y=XB8+¢, (LD

where v is the # x1 vector of observations on the dependent variables, X is the 7 X k
non-stochastic regressor matrix and rank of X is 2< », B is the kX1 unknown parameter
vector, and € is the 7z X1 disturbance vector with expectation E (¢) =0 and covariance

matrix E(ee’) = ¢>V, where V is assumed to be symmetric and positive definite.
In model (1.1), the generalized least squares (GLS) estimator of & is

= -Lowe) = L 6-XByO-x3), (12)

where B = (X VX)X Vly. Note that S? is an unbiased and consistent estimator
(Dhrymes (1978) and Fomby et al. (1984)). However, in practice the V is usually unknown,
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so that S? cannot be calculated. Taking the ordinary least squares (OLS) estimator of A 5

instead, we get

st = Lo (7)) = L 6-xBY6-xB), (13)

n—
where B = (X'X) 'X’y. Then it is well known that S? is in general a biased and

inconsistent estimator of ¢%, when V# I (Dhrymes (1978) and Judge et al. (1985)).

The nature of this bias was investigated by many authors. For the case of the first-order
autoregressive (AR(1)) disturbances, Sathe and Vinod (1974) and Neudecker (1977, 1978)

tabulated the upper and lower bounds for the relative bias, E(S 2/ 6%). Kiviet and Kraemer

(1992) showed that the relative bias tends to zero as autocorrelation increases whenever there
is an intercept in the regression. Song (1995) evaluated the upper and lower bounds for the
relative bias for the case of a first-order moving average MA(1) disturbances. However,

Kraemer (1991) proved the asymptotic unbiasedness of S? for the AR(1) disturbance, and
Song (1994) showed same results for the case of MA(1).

It has long been known (Klock (1972) or Drygas (1973)) that S? is a consistent estimator
of the true disturbance variance under conditions which are much less restrictive than the

ones needed for the consistency of /ﬁ\ However, when the disturbances are correlated but
still homoscedastic with general covariance E(ege’) = 025 V, S§? often remains consistent

depending on the structure of V (Kraemer and Berghoff (1991)).

In this paper, we consider the linear regression model with an MA(q) disturbances. First,
we will prove that the OLS esimator of the disturbance variance is asymptotically unbiased
without any restriction on the regressor matrix X. Next, we provide the weak consistency of

s?,
2. Asymptotic Unbiasedness of S?

Let the disturbances & in model (1.1) be generated by an MA(q) process:
& =a,—6a,— —0,a,,, t=1,2,-,n 2.1
= 6(B)a, ,
where B is the backshift operator such that Ba,= a.,,, 6(B)=(1 —6,B— 0,B* —--

—8,B") is polynomial in B with order ¢ and {a,} is a sequence of independent and

identically distributed random variables with mean zero and constant variance & 2 - We also
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assume that all the zeros of @(B) lie outside the unit circle. Thus, the # X # auto-
covariance matrix is given by E (ee’) = & V. Here the elements of V, v, , are given by
Zinde-Walsh (1988). That is,

Co for r=10
vy = | ¢ for 1<r<gq, 14j=12,",n, (2.2)
0 for 7> g,

where ¢y = & = (1 +¢9%+"'+03)0% ,
Cy = (_0r+010r+1+920r+2+ +0q—req)0€: r=|z—-1|

In what follows, we explore the asymptotic unbiasedness of S? in the context of the MA(q)

disturbances. At first, we need the characteristic roots of V, which are obtained by the

following result:

Lemma 2.1. (Horm and Johnson 1985, p. 346) Let V be (# X n)-Hermitian matrix and let

the characteristic roots A,( V), £=1,2,*,n be arranged in decreasing order A ma =4, =

Ap=2 - 271, =Am. For eacht=1,2,", n we have
UL < E eyl dj= 12, 2.3)
Then, we have the following theorem.

Theorem 2.1. If the disturbances € in model (1.1) follow an MA(q) process of (2.1), then
S? is asymptotically unbiased for &> .

Proof. From Watson (1955), Sathe and Vinod (1974) and Dufour (1986, 1988), we have the
inequalities for the relative bias E(S?/d%):

mean of n—#k smallest N
0= characteristic roots of V = — E( o )

mean of z—k greatest ”n
< characteristic roots of V = n—~k’ 2.4

which implies that the upper bound for E(S%/ ¢%) tends to one as # — oo,
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Now, it remains to show that the lower bound tends to one as well. By the Lemma 2.1
and mathmatical induction, the characteristic roots of V are bounded:

(L+16:] +160 +-+ +16,])?
1+6+6+-+6,

A V) < t=1,2,-,n, 25)

where A; = A, = -+ > A, are the characteristic roots of V which depend only on the order

g, not the sample size .

Therefore, a lower bound for the mean of the # —k smallest characteristic roots of V in
(2.2) can be derived as follows:

1 'l“k 1 n k 1 k
wk 2k = g (BAT ZAD =S g (V)= 2 )
k (1 +16, +1651 + - +16,1)?
> P q

from (25). Obviously, the first term on the right hand side in (2.6) tends to one and the

second term to zero as # — o0, The proof of Theorem 2.1 is complete.

3. Consistency of S?

When the disturbances are correlated but still homoscedastic, with general covariance

E(ee’) = @&V, Kraemer and Berghoff (1991) have given the following necessary condition

for consistency of s?,

Theorem 3.1. (Kraemer and Berghoff (1991)) Let the disturbances & in model (1.1) be
correlated but stil homoscedastic, with general covariance E(ee’) = &V, and let A

be the largest characteristic root of V. Then S? is a weakly consistent estimator of o‘ze
irrespective of X if
—}i—e'e 2, > and A pa = 0(n) 3.1

Then, we explore the consistency of S? in the context of the MA(q) disturbances in the

following theorem.

Theorem 3.2. If the disturbances €& in model (1.1) follow an MA(q) process of (2.1) and
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E( a‘f) = 75 { oo, then S? is a weakly consistent estimator of 025.
Proof. It is enough to show that two conditions in Theorem 3.1 are hold.
) 1 ..5y_ 1 Lo o2y _ 1 N (L g )2
Since E(-&'e) = - EX tisllet) . El §1(a, glﬂ.at—.) ]
=d,(1+ i‘.lﬁf) = ¢ for all n, since E(a;,a.,-n) =0 for m>0,
=

and
Var(-};e'e) = E[(—;-e'e)z]— [E(—};&"e)]2 = E[(%e'e)zl—a“e
= L S Ela- 2 620"

n
+ 2 3 SE(a - iea,o (a,— & bia,))=de . (2

”n

It remains to show that E[( % e'e)?] N ¢~ . After some calculations, the first term of

the right-hand side of equation (3.2) can be reduced to the following:
L % Bl £ 600" = J [+ E, 01 +60 -0 for n -,
since E(ai) = 7¢ o,
Also, the second term is
2 ¥ BE (e~ B 00 e~ F 8ia.)’]

—wnzl) mmaa+ B2 B a2z L dar gy =d
for n — oo,

Hence the first condition holds. Now, the maximum characteristic roots of V in (2.2) can be

expressed as follows:
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(1+16,1 41651 + - +16,1)?
1+6+65+ - +6, '

Amx (V) < (33

which implies that the maximum characteristic root of V is o(#). This completes the proof.
For the case of MA(1) process, the exact bounds for the bias of S? depend on the patterns
of the regressor matrix X in finite observation (Song (199%)). However, as* # — © we

proved that S? s asymptotically unbiased and weakly consistent for 025, regardless of the

regressor matrix X, when the disturbances & are generated by an MA(q) process.
Since the asymptotic properties of S? strongly depend on the structure of V, we may

consider the asymptotic unbiasedness and weak consistency of S? in panel data when the

disturbances follow an error component model with serially correlated time effects.
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