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Abstract

Added variable plot and component-plus-residual plot are very useful for studying
the role of a predictor in classical regression analysis. The former is usually used to
check the effect of adding a new variable to existing model. The latter has been
suggested as computationally convenient substitutes for the added variable plots,
however, this plot is found to be better in detecting nonlinear relationships of a new
predictor. By combining these two plots dynamically, we can take advantages of two
plots simultaneously. And even further, we can get some knowledge of collinearity
between a new predictor and predictors already in the model, and more accurate
information about the possible outliers.

1. Introduction

Added variable plot (AVP) as the name implies is used to check whether a new predictor
can enter into the existing model or it is useless. This plot is especially useful for studying
the role of a new predictor if it enters linearly into a model. The general scatter of the point
gives an overall impression of the strength of the relationship. See Cook and Weisberg (1982)
and Besley et al. (1980) for some discussions. The component-plus—residual plot (C+R plot or
partial residual plot) has been suggested as computationally convenient substitutes for the
added variable plots. See Larsen and McLeary (1972) and Atkinson (1982) for discussions
about these plots. In particular, see discussions by Mallows (1982), Weisberg (1982), and
Welsch (1982). Mallows (1986) include a single quadratic term in the regression to catch
nonlinear effect and call it augmented partial residual plot. When the predictors under
consideration are random, we can use the approaches by Cook (1995) to assess the exact
functional form. He noticed that usual partial residual plots and augmented partial residual

plots can reveal exact relationship when the conditional distribution of X, given X, is linear

or quadratic, where X, is predictors included in the model and X, is predictors to be
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included. He introduced CERES (Combining Conditional Expectations and RESiduals) plot
which can reveal exact nonlinear relationships when the conditional expectations E(X1X5,)
are neither linear nor quadratic. ,

Empirically, it has been known that added variable plots dre superior in checking whether
the new predictor is needed in the model regardless of the form of actual relationship. This
plot often failed in dealing with curvature as a function of a selected predictor. However, this
plot is clearly giving some idea of effect of adding a new predictor. Contrary to added
variable plots, C+R plots usually give information about the appropriate functional form as a
new predictor is entering into the model. Cook (1995) showed under certain conditions we can
see the true functional relationship with C+R and augmented C+R plots and extended this idea
in developing CERES plots. These plots reveal true relationships under random predictors.

In this article, we will combine added variable plot and C+R plot dynamically into one plot
so that we can travel from one plot to the other smoothly. This one combining plot will give
information not only in checking effect of adding a new variable but also in detecting
appropriate functional form. Further this plot gives idea about the relationship between X,

and X, by tracing variance changes from one plot to the other. And by trancing suspected

points during the travel we can get more accurate information about possible outliers. We
used R-code by Cook and Weisberg (1994) implementing a new method.

Section 2 introduces model and notations, AVP, and C+R plot. Section 3 discusses a
dynamic combining plot followed by simulated and real examples in Section 4. In Section 5
we conclude this article.

2. Standard methods

Suppose we have a usual linear regression model
Y = X8 + ¢

where X is an 2Xp full rank matrix of known constants, Y is an #»-vector of observable
responses, B is a p-vector of unknown parameters, and € is an #»n-vector of unobservable

errors with indicated distributional properties.
Now, let us partition the predictors into two parts. One for the predictors already in the

model and the other for candidate predictors, and call them X, and X, respectively.
Theoretically, there is no need to restrict the dimension of X, to be one, however we will

assume that the dimension of X, is one for the convenience. Then the model becomes

Y = X8, + B./(X,) + ¢
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if we assume the predictor X, enters the model through the function f Here f is assumed
to be sufficiently smooth and #’s are appropriately partitioned.
Suppose we are interested in the problem of adding a new predictor X, or detecting

appropriate functional form when it enters into the existing model. To make an AVP, we need
following steps.

1. Fit the regression of Y on X, and save the residuals from this regression, iLe.,
(I—U,))Y, where U is the orthogonal projection matrix on all the columns of Xj.

2. Fit the regression of X, on the other X's, ie. X). Save the resulting residuals, i.e.
(I— U)X,

3. Plot (J— U)Y versus (I—UDX,.

If the (I—-U)Y are regressed on (I—U;)X; via ordinary least squares, intercept will be
zero as long as the intercept was included as one of the variables in the model with all the
predictors, and the slope will be the same as the coefficient for X, for the full model. In a

real sense, then, the added variable plot does summarize the relationship between Y and X,

adjusted for other X's. Johnson and McCulloch (1987) noted that it reveals true functional
form f if f is linear, but it may cause undesirable distortion in general. The advantage of the
added variable plot is that it is easily interpretable since it displays the relationship between
Y and X, adjusted for the other X's.

On the other hand, the need to transform X, to another scale seems to be better reflected

in the component plus residual plot. This plot is introduced by Ezekiel (1924), and the
informal goal is to display the information relating to a subset of the covariates in a
univariate regression problem. It is called a partial residual plot by Larsen and McCleary
(1972), and a component plus residual plot (C+R plot) by Wood (1973). Steps needed are as
follows.

1. Fit the regression of Y on all the X's and save the residuals from this regression,
e, e.
2. Plot e + X, B, versus X, where B, is the estimated coefficient of X, for the full

model.

It is often claimed that C+R plots are useful omnibus plots that allow detection of outliers,

observations that influence 73\2, curvature and other informative nonrandom patterns. The

detection of curvature, however, is the central motivation for C+R plots. Mallows includes
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single quadratic term in the regression to catch nonlinear effect and call it augmented partial
residual plot. When the predictors are random, Cook (1995) showed that C+R plot and

augmented C+R plot give exact f if the conditional distribution of E(X;|X,) is linear or
quadratic. He extended this idea to develop CERES plot which can be used for random
predictors.

Although both the added variable plot and the C+R plot have the same slope and the same
residuals, their appearance can be quite different. In the added variable plot, for example, the
estimated variance of the slope is

n—p 1
(572)7 S —xa =/ W

where R% is the square of the multiple correlation between X, and X;. Apart from the
multiplier (#—p)/(n—2), the apparent estimated variance of B, in the added variable plot is
the same as the estimated variance of /ﬂ\z from the full regression. In the C+R plot the

apparent variance of fs is

=27 s @
3
which ignores any effect due to fitting the other variables. If R% is large, then the value of
(2) can be much smaller than that of (1), and the C+R plot will present an incorrect image of
the strength of the relationship between Y and X, (conditional on the other X's). In fact, it
can be seen that the partial residual plot is a hybrid, reflecting the systematic trend of X,

adjusted for X, but the scatter of X, ignoring Xj.

3. A combining plot

It is normally not true or at least difficult combining any two kinds of plots and traveling
from one to the other smoothly. Fortunately for AVP and C+R plot, it is possible by the
following facts from Mosteller and Tukey (1977), and Velleman and Welsch (1981). They

outlined a method to obtain AVP in a relatively simple way since AVP for each X's are
potentially expensive to compute. And this can be used here to combine two plots. Points
plotted on the vertical axis in the added variable plot is (/—U;)Y, and it can be expressed

as e+ (I— U)X, B, Then it can be easily checked that the C+R plot can be obtained if we
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replace the matrix U; by zero in the added variable plot. So by multiplying a constant, like
/ to the matrix U; in the added variable plot and varying it from O to 1, we can travel

smoothly from one plot to the other. Hence the combining plot can be expressed as
e+ (I-AUNX, B,

where A vares from 0 to 1. When A=0, it becomes e+X, B, so the C+R plot and A=1

gives e+ (I—UDX, B, or (I—U,)Y which corresponds to the AVP. Any values between 0

and 1 for the A gives an intermediate plot between C+R and AVP. Similarly, the estimated

variance of the slope for the combining plot can be expressed as

n—p 1
( n—2 )52 Ei(X,z—Yg)Z(l—ARg) ’

where A also varies from 0 to 1. Finally by varying A smoothly from 0 to 1 or vice versa,
we can travel between two plots continuously, and can see any kind of interesting things
which might be revealed during the travel.

Here are one possible routine to follow. First set A=1 for one chosen predictor, then this
plot or AVP will tells you whether this chosen predictor is needed or not, then gradually
decrease A from 1 to 0 to check whether the width of the scatters or variance estimate

decreases substantially or not. If there are some substantial decrease in the variance, then it
means the chosen predictor is highly correlated with other predictors already in the model, and
this can be used to check possible multicollinearity. Finally, if AVP shows some trend or
pattern which tells the chosen predictor could be necessary, then as the A approaches to 0
the C+R plot will reveal any functional form for the new predictor. Also, by tracing any
suspicious points during the travel will Lelp identifying possible outliers or leverage points.

Here are one simulated and real examples. We used R-code by Cook and Weisberg (1995)
to implement this method.

4. Examples

Example 1.
This is a simulated example. Usual linear regression model with three predictors is used. Y

is generated from

Y = B+ BX: + B:Xy + B(X;)°
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with
X, ~ MO,
X, ~ MO, 1)
X;=X +X + e 3)

All A’s are set to be 1 and & is normally distributed error term with mean O and variance

02. X, and X, are independent, and multiple correlation between X;+X,; and Xj is very

high. In other words there exists multicollinearity. No errors was included so that Y is a
deterministic function of the three predictors. This allows the conclusions to be illustrated
more clearly than if an additive error were included but will not change the qualitative nature

of the results.
We only include AVP and one intermediate plot and C+R plot since it is impossible to
include a DYNAMIC plot here. Apparently C+R plots for all the predictors reveal appropriate

functional form (See leftmost plots in Figure 1 and Figure 2 for X, and X3, respectively.).
However, it fails to show importance of those variables when it enters into the model with all
the other predictors already included in the model (See rightmost AVP’s in Figure 1 and
Figure 2 for X, and Xj;, respectively). According to two added variable plots no predictors

are important or needed once other two predictors are already included (If we include (X3)2

term instead of Xj itself, dynamic plot looks like a linear one for all A values saying Xj is

needed in the model linearly as (3) implies.). This is mainly due to multicollinearity.
In Figure 2, the variance for the C+R plot on the leftmost is relatively smaller than the
rightmost AVP for the X; showing high correlation between Xj and other X’'s which is

clear from (3) above. This effect can be seen by notable change of variances during the
travel. If we look at two plots separately it could be overlooked since plots usually use
appropriate range according to given data set. Also dynamic graph turned out to be useful to
trace possible outliers as two selected points in the Figure 2 are clearly not outliers. In this
case also by looking at two plots separately we can not tell which point is which. However,
we could only include intermediate plot for AVP and C+R plot in this paper.
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Figure 1 Three combining plots for X;. From left to right A=0,4=0.88,A=1
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Figure 2: Three combining plots for Xj3. From left to right A=0,4A=0.88, A=1.

Example 2.

Real data set comes from Longley (1967). There are six predictors-namely, Gross National
Products (GNP), GNP deflator, Unemployment, Size of Armed Forces, Noninstitutional
Population 14 Years of Age and Over, and Year. And the responses are Total U.S.
Employment of sixteen years from 1947 to 1962. Combining plots for Armed Forces size and
Population are included in Figure 3 and 4.

From Figure 3 the Armed Forces size is clearly needed in the model and not highly but
seems to be moderately correlated with other predictors. The functional form for this predictor
could be different from linear even though non-linearity does not seem to be so strong.

The Population seems to have strong correlation with other predictors, so if other predictors
are already in the model, it looks unnecessary from the AVP even though it depends on the
model we choose. Contrarily, C+R plot shows clear linear pattern meaning if Population is
needed it enters into the model linearly. However, we do not pursuit the best model since it
is not the purpose of this paper.
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Figure 3: AVP and C+R plot for Longley’s data (Armed Forces size)
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Figure 4: AVP and C+R plot for Longley’s data (Population)

In this paper, we have seen how to make a combining plot of AVP and C+R plot, and what
we can get from traveling between those two plots. By combining these two plots
dynamically, we not only can take advantages of these two plots but also can get further
knowledge of collinearity between the predictor under consideration and the predictors already
in the model. Furthermore, we can trace the behavior of possible outliers during the travel so

will help us to identify that those are real outliers or not. Summarily, we can get following

5. Conclusion

information from the combining plot.

1. Whether the predictor under consideration is needed.

2. What could be the right functional form if it is needed.
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3. The predictor under consideration is highly correlated with other predictors already
in the model.
4, Which points are possible outliers.

Hence by combining AVP and C+R plot dynamically, we can get more information than
from two plots separately.
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