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Bayesian Estimation Procedure in
Multiprocess Discount Generalized Modell)

Joong Kweon Sohn?), Sang Gil Kang3) and Joo Yong Shim3)

Abstract

The multiprocess dynamic model provides a good framework for the modeling and
analysis of the time series that contains outliers and is subject to abrupt changes in
pattern. In this paper we consider the multiprocess discount generalized model with
parameters having a dependent non-linear structure. This model has nice properties
such as insensitivity to outliers and quick reaction to abrupt change of pattern in

parameters.
1. Introduction

Dynamic systems have been used by communications and control engineers to the state of
a system as it evolves through time since the works of Kalman(1960) developed an recursive
estimation procedure for the state variables of a linear dynamic system. Ho and Lee(1964)
studied the dynamic linear model within Bayesian framework. Duncan and Horm(1972)
introduced the Kalman filter by relating the dynamic linear model to random J regression
theory using the time varying random parameters as state variables. Harrison and
Stevens(1976) summarized the foundations of Bayesian forecasting as the parametric or
statespace model, the probabilistic information on model parameters, the sequential model
definition which describes the dynamic behavior of model parameters and some uncertainty in
choosing the underlying model from a number of discrete alternatives. Masreliez and
Martin(1977) developed robust Bayesian estimates for a state space model where either the
state noise is Gaussian and the observation noise is heavy-tailed, or vice versa. West(1981)
developed an approximation to the sequential updating of the distribution of location
parameters of a linear time series model. He examined the behavior of the resulting non-linear
filter algorithm. Ameen and Harrison(1985) developed normal discount Bayesian models in
order to overcome some practical disadvantages of dynamic linear models. West, Harrison, and
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Migon(1985) developed the dynamic generalized linear model for applications in non-linear,
non-normal time series and regression problems. Kitagawa(1987) developed a non-normal state
space model for non-stationary time series, where the observation and system noise
distributions are non—normal.

The multiprocess dynamic linear model was developed by Harrison and Stevens(1971,1976)
for the time series that contain outliers and are subject to abrupt changes in pattern. Smith
and West(1983) and Smith, Gordon, Knapp and Trimble(1983) described a related monitoring
procedure for detecting various forms of kidney failure in renal transplant patients. West(1986)
introduced a method of monitoring the predictive performance of a class of Bayesian models.
West and Harrison(1986) studied the method of model monitoring and adapting to structural
changes in the time series. Bolstad(1986) presented Harrison-Stevens forecasting algorithm and
the multiprocess dynamic linear model. Bolstad(1988) developed the multiprocess dynamic
generalized linear model. Whittaker and Fruhwirth-Schnatter(1994) used to a triangular
multiprocess Kalman filter for detecting bacteriological growth in routine monitoring of
feedstuff. Bolstad(1995) developed the multiprocess dynamic poisson model for estimating and
forecasting a poisson random variable with a time-varying parameter. Sohn and Kang(1996)
developed the multiprocess non-linear dynamic normal model.

In this paper, we develop multiprocess discount generalized models with non-linear
structure. In Section 2, we develop the recursive estimation for the multiprocess discount
generalized model with parameter non-linearities. Here the model is only partially specified in
terms of their first and second moments. In Section 3, we study the proposed recursive
estimations for the generalized exponential growth model by using Monte Carlo simulation
study.

2. Recursive Estimation of Multiprocess Discount Generalized Model

2.1 Introduction

The multiprocess dynamic linear model by Harrison and Stevens(1971, 1976) is described as
follows. The observation is normally distributed and the mean of the observation distribution
is a linear function of parameters. The parameter vector is updated by a linear transform plus
a perturbation which has an expected value equal to a zero vector. Perturbations at different
times are independent of each other. However the perturbation distribution depends on the
perturbation index variable at each time. The perturbation index variables at different times
are independent and are outcomes of independent multinomial trials with known prior
probabilities.

Ameen and Harrison(1985) introduced the normal discount Bayesian model to overcome
some practical disadvantages associated with the dynamic linear models. The normal discount
Bayesian model updates the variance-covariance matrix of the parameter vector by pre- and
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post-multiplication by a discount matrix, instead of updating by adding the perturbation
variance matrix in the dynamic generalized linear model. This also has the same effect of
increasing the variance and in many cases modelers and forecasters have more intuitive feel
for the appropriate discount matrix than for a perturbation variance matrix.

Bolstad(1988) proposed the multiprocess dynamic generalized linear model by applying the
multiprocess idea on the dynamic generalized linear model.

The multiprocess dynamic generalized linear model can be extended to the multiprocess
non-linear dynamic generalized model by introducing non-linear parameter evolution and
predictor functions.

In this section, we introduce the multiprocess discount generalized model and suggest the
recursive estimation procedure for it. Assumptions of the dynamic discount Bayesian model
are same as those of the dynamic generalized linear model except that the prior distribution of

B; given Y,_; will be replaced by a distribution with mean vector G, 3,_1 and
variance—covariance matrix B,G,V,_,G/B,, that is, (8,1 Y ,1)~(G, Bi-1,B:.G{ V:_,G/B),
when the posterior distribution at time £—1 is a distribution with mean vector B,_l and

variance-covariance matrix V,_;, that is, (B, | Y, ~( Bis1, Vo). Here B, is the

discount matrix, a diagonal matrix of discount factors. The effect is similar to that of adding
a perturbation in the dynamic linear model. One can see that the mean of the subsequent
prior distribution is unchanged and the variance matrix has been inflated to allow for an
increased uncertainty. However, the variance matrix inflation is multiplicative instead of
additive and this produces some slight differences.

The multiprocess extension of this model allows the discount matrix to have one of k

possible values B,(D,-",Bfk), depending on the value of the discount index variable I, The

discount index variables are an independent outcomes of multinomial random trials with

known prior probabilities P(I,=j)= " which may change over time. Thus this model is

formulated as follows.

Let I, be perturbation index variable at time ¢
PU=)=x? for j=1,".k.
The observation model is
p(v,| 8)=expl (v, 8)+ (05, —b(8))],
r(8)=n,=F.(8)), 2.1)

where F -) is a known non-linear regression function. When I,=j, the evolution equation
is

B:=g(Bi-1)+7, 2.2)
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where g{ +) is a known non-linear evolution function and 7, the perturbation vector at

time £

2.2 Recursive Estimation

The initial conditions for the estimation at time #—1 require that the first and second
moments for each of # posterior distributions are known. Each distribution is conditional on
the perturbation index variable at time f—1 having been one of the k possible values. Thus
the posterior distribution of B, given I,.;=1 and Y, is known as a distribution with mean

vector £, and variance-covariance matrix, Vv e, Byl Li=1, Y,~1)~(/3/,(7_'1, V).

The notation Y ,.,=2%,-1,¥32,,¥ denotes all the observation up to and including ¥ ,-1.
Also required is that the posterior probabilities of perturbation index variable at time £—1,
q,(l)1=P(I,-1=z' | Y,—1), is known.

For the structure of parameter non-linearities, we suggest the linearization technique.
Various linearization techniques have been developed for dynamic non-linear models. The most
straightforward, and easily interpreted approach is the one that is based on the use of first
order Taylor series approximations to non-linear regression and evolution functions. This

requires the assumption that both F,(-) and g:(-) be differentiable functions of their

vector arguments. A Taylor series expansion of the evolution function and observation
equation are given as follows.

A Taylor series expansion of the evolution functions about the estimate B/,m_l of B,

gives
2B, =gl BT +GLB 1~ BT +R (B — B,

where R,(8 ,_1—@) is a remainder term which is a function of quadratic and higher order
terms of (8 ,VI—B/,(TLI) and G, is the known #x#n matrix derivative of the evolution matrix

evaluated at the estimate ﬂ/tm_l,

- 0g{B 1)
i e P

Assuming that terms other than the linear term are negligible, the linearized expression of the
evolution equation becomes

Brg BT +GLB .1~ BT+
= ht+ Gtﬂ —1 + Y (23)
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where #,= g,(B V=G ,3, , is also known. Similarly the non-linear regression function is

also linearized about the expected value a,= h,+ G,B 2 for B,

F(B)=F(a) +H/(B,—a) +R2(/31_at).

where R,(8,—a,) is a remainder term which is a function of quadratic and higher order
terms of (B;,—a, and H, is the known m-vector derivative of F, evaluated at the prior

mean a,,

H,=[ aF,(ﬂt)] a=a,.

9B,

Assuming the linear term dominates the expansion, the non-linear regression function is
linearized as
17=F«{B8)
~f+H/ (Bi—a), (2.4)
where f,= F,(a,).

(1) Evolution Step

In this step, evolving to time f we find the prior distributions about 8, and 7, depend on

the combination of possible models applying at both f—1 and £ Each of these &
distributions is calculated to time ¢ conditional on I,=j. The joint prior distribution of A,

and %, and conditional distribution of B, given 7, are given as follows.
By wusing the discount matrix and evolution equation (2.3), the mean vector and

variance-covariance matrix of the prior distribution of B, given I, =1i,I,=j and Y, are
Bﬂ h,+G,,B, , and C; =BG,V .G/B”, respectively. That is,

Bl Ioy=i, I=7, Y ,_)~( BT, M), 25)

By using the prior distribution (2.5) and the observation equation (2.4), we obtain the joint
distribution of B; and 7,

E[77t| I,,= L,1=7 Y, 1]—ft+Ht(Bﬂ_at)

and
Va"{’?tl It 1= I ]’ Yt 1] — C[(i.])Hh

respectively. The covariance of B, and 7, given [, ,=¢,I,=jand Y, is
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ColBp,n | I,y=1,1=j,Y,1]= cYH,

Therefore the mean vector and variance-covariance matrix of the joint distribution of 3, and
7. given I, =i 1;=j andY, | are mean vector (ﬁ@,f,+H,’(,6’:(‘T’7—a,))' and
variance—covariance matrix

( ct(l.)'). Ct(t.DHt)

Htct(:.l) H'tct(u)

respectively. That is,

s

[ﬂtl]t*lzl',[tzj’ Yt~1]~[[ t
7t

| Ct(i.ﬁ Ct(i.i)Ht 28
ft+Ht'(ﬁ’tG’\D —ay

' Ht' Ct(i,i) Ht'ct(i.i) H,

By using the method of linear Bayes estimation, the moments of the conditional distribution

of B, given 72, are directly obtained. Therefore the mean vector and variance-covariance
matrix the conditional distribution of the parameter vector given 7, are
(B +CAPH(H, CH) ~ = (ft HY (BT —a)))
and
(Ct(i.ﬁ _ Ct(i.ﬁHt(Ht'Ct(i.J)Ht) —lHtr Ct(i.f)) )
respectively. That is,
Bl Ioy=1,0=7, 7, Y o)~ (B +CYPH(H, CYPHY g~ (ftH (BT —a))),

( Ct(i.i) _ Ct(i,i)Ht( Ht' Ct(i,})Ht) —lHt' ct(i.i)) 1.

(2) Updating Step

In this step we update the prior distribution of the parameter given the observation ¥,
Assume that the prior distribution (8,|71,.,=1,1I~=j, Y,;) has the conjugate prior
distribution CP(7*?,8*?). The parameters 7. "” and 8*? are chosen to be consistent
with the moments for 7, in joint distribution(2.6). The relationship between the moments of

the sampling parameter prior distribution and the moments of 7, is called the guide

relationship by West, Harrison, and Migon(1985).
Clearly the joint distribution of ¥; and 8, is
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Ay, 01 1,,=1¢1=], Y.
=f(yt | 0:)]‘(‘%‘ Ipl: Z, It= 7, Y,,l)

= explc(v, @) +c(r 7, 857+ 6,(7 5 +y8) — (857 + 8)b( )]

and the marginal distribution of ¥, is
Ayl I, y=1,1=7, Y.
= [Ayn 6,11, =i 1=35, Y, )db,

= explc(ys, #) +cl 7, 857) — (7 “? + ¢v., 857+ 9)]

Thus posterior distribution of 8, given I,_;=1,1I,=j and Y, is

f(etl I,,=1i1=}], Y)
—ﬂy1,01|1t1 ,1=4 Y, 1)/f(yt|It1 ,1—~;5,Y,. 1)

= exp[( 7’t(l })+¢yn ¢ ))+ ) +91( yt(l A +¢yt) (6t(l A +¢)b( at)]

Therefore the posterior distribution of &, given I, =i¢,I/=j and Y, is the conjugate
posterior CP(y,%? + ¢y,, 8 “?+¢) and the probability density function

f(gt | It—1= i! It:jy Yt)
= exple(7 "+ 8y, 8.0+ 8) + 07 + ) — (857 +$)b(8)]. @7
The guide relationship is used to relate the posterior distribution of the sampling parameter
back to the distribution for 7, From posterior distribution(2.7), the posterior mean and

variance of 7,= h(8,) are calculated and denoted by 7}:(’\’7 Ene)|I,_,=11,=4Y,] and

U= Vad (6) | I,_,=1,1=7 Y,], respectively. This completes the determination of the
first two moments of the conditional distributions of 7, at time ¢ posterior to the
observations Y,

Now we need to relate this back to find the moments of the posterior distribution of the
parameter.

By using the Bayes theorem, one can get

ABen | I,oy=1,1~7, Y)
=f(ﬁ’t| I, = L1=17, . Yt—l) . f(’hl I,,= t,I=17, Yt)-
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and hence

LBl I,o= =7, Yt)—ff(ﬂnﬂtllt =1,1=7, Y)dy,.

By taking the expectation and variance for this distribution, we obtain the expressions as
follows.

E‘[Brl It—1= 7, t]_EIE(Bt | It 1= l I j, /IS Yt—l) l yt]
and
Vard B, | 1,-,=1,1,=7,Y,] = El Var(B, | I,- =t 10,=j 7, Yt~1)'yt]

+Vad EB, | 1,.1=1,1;=7,7,, Y1) | »].

Thus we obtain the mean vector and variance-covariance matrix as

B =E[B) I, =i I,=j, Y]
= G5+ CEPH(H, C,“PH) N 5P — (f+ H (BF7 —a)))

and
Vt(i'i) =Vark B, | I,.1=1,1,=j, Y]]
=C t(i.l)_ C Ei.i)Ht( Ht, C t(i.l')Ht) ~1Ht' C[(i.)')

+Ct(i.;7H[( Ht' C, (tZDHt) *lUt(i.;)( H/ t(i.J)Ht) _1Ht, Ct(i,ﬂ’

respectively. Therefore

Bl I, =1,1,=7,Y)~( @, Vt(i']))- (2.8)

This completes the determination of the posterior distributions of the parameters. To complete
the development of the recursive estimation, we need to determine the posterior probabilities
of the perturbation indices given the present observation. These can be used to detect a
change for situation in which the change of pattern is of more interest than the forecast itself.
Using the Bayes theorem, we have

(‘D P(It 1= :]I Yt)

q 7rt(” explc(v, ¢) +c(rf?, 850 — ey 2+ ¢y, 81+ $)]
P(ytl Yt—l) ’

for ¢=1,"*,k and j=1,-, kb The quantity P(v,| Y, ;) is a normalizing constant. Hence

the P,(i") are all completely determined.
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(3) Collapsing Step

To proceed to time £+1, we need to remove the dependence of the joint posterior
P(B,1Y) on kxk possible combination of [I,.;=¢ and I,=j for i=1,---,k and

j=1,,k. The principle that the effect of different models at time f—1 are negligible for
time ¢+1 is applied for approximating such mixtures. After collapsing the posterior
distribution, mean vector and variance-covariance matrix of B, are obtained as follows.

By using the posterior index probabilities at time ¢, the posterior distribution of B, given
I,=j and Y, is represented as a k component mixtures of 8, given [, ;= i,I=jand Y,

Thus the posterior distribution is

k I, ,=iI,=jl|Y)
RB: 1= ;.Y,)—fflﬂﬁ,u, 1=i1,=5,Y) - ,;(,_,‘,Y[) '
= 2 (q(i)) _IP(' j)f(lgtl I, ,= =7 Y,

k R
where g = 21 pld.
=

Also by using the technique of approximation of mixture, the mean vector and
variance-covariance matrix are

k : ~
3771 =EB8: | I,=j, Y= El(qtm) _—lPS“) ﬂ'ﬁ

and
Vt(j) = Va”{ﬂt l I,=j, Yt]

— 3 (q9) PEN VN (FT— FO) (BT — )1,

=1
respectively. Therefore the posterior distribution of B, given I;=j and Y, is
(ﬂt I _[t::j, Yt)"'(ﬂ/tm. Vt(}))- 29

We are now in the same position as when started the recursive estimation procedure, so we
are ready to repeat the process when the next observation becomes available.

2.3 Forecast Distributions

At time ¢ the distributions required by the forecaster are the distributions of
(ﬁ t+1 I I,= i,It+1= j, Y[),(e t+1 | It+1=j, Yt) and (y t+1 ‘ It= i,It+1=j, Yt) These forecast
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distributions are as follows.
The forecast distribution of vy,., given I,=1¢,1,.,,=7 and Y, is

f(yH—llIt ZIH—] 7, t)

il
M-

k .
;gl 7 aPexple(y i, ) +c(r 5D, 85D — ey S+ ¢y i1, 85D+ 1.

The mean vector and variance-covariance matrix of the forecast distribution for £,.; given

ILi=1,1,,=; and Y, are mzhtﬂ'i"GzH 573 and Ct(i?=Gt+1 Vz(o G't+1+Rt(21,

respectively. Thus

(BH—I | I,=1, It+1‘—], Yt) ( t+i ’ x—{))

The forecast distribution for 8, given I,=1,1,.1=7j and Y, is the conjugate distribution
CP(r{i],8(47), that is,

Gy | L=4,1,,=7, Y)~CP(y{P, 6 &D).

3. Monte Carlo Simulation Study

In this section, we study the performances of the Bayesian estimation proposed in Section 2
via Monte Carlo simulation for the multiprocess discount generalized model.

We consider the generalized exponential growth models by Migon and Gamerman(1993). Let
¥, t=1,2,--,n, be a time series of interest. The model is normally distributed with mean

8, and variance V(8)/¢, that is, (v,| 8, ¢)~MN8, V(8,)/$,) where (8, describes a
particular known variance law and ¢, is a known scale factor and 8, is the level of the

process related the parameter B, through the non-linear regression #(8,) = F{B;). Since the

canonical link function in the normal case is the identity, thus to complete the model
specification the functions F and g are defined as

t :Ft(ﬁt)zﬁlt

and

BuatBaua
gt(ﬂz—l) =[ 32:—1ﬂ3t—1 ]

BBI’I

B1:-1 is the level, B, is the growth in the level and A3 is the damping factor for the
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model at time £—1. The non-linearity in the model is due to multiplicative effect of A;. The

simulation study was be carried out with the following example on an artificially generated
time series. The time series consists of 80 normally distributed random variables and are the
following change pattern. The time series data start with no change with an outlier of at the
12th observation. At the 2lst observation, the growth change starts and continues up to the
30th observation. From the 31th observation to the 50th observation there is no change. From
the 5lth observation, the damping factor change starts and continues up to the 60th
observation. At the 6lth observation, level change starts and continues up to the 80th
observation with an outlier at the 72th observation.
The forecast and the actual observations are shown in Figure 3.1 and the forecast errors
are shown in Figure 3.2. From these figures, it can be summarized as follows.
(i) The developed models give good estimates by using past data as well as present data
when the time series is in a stable pattern.
(ii) The developed models are not quite sensitive to an outlier.
(iii) The developed models react quickly when a change occurs. But when a change occurs,
the forecast error is slightly increasing.
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Figure 3.1 Observed( « ) and Forecast( ° ) Value
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