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The Minimum Dwell Time Algorithm for the
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Distribution!)
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Abstract

We consider discrimination curve and minimum dwell time for Poisson distribution
and Poisson-power function distribution. Let the random variable X has Poisson
distribution with mean A. For the hypothesis testing Hy:A= ¢ vs. Hyi:A=d (d<¥),
the optimal decision rule is; reject Hy if X <c. Since a critical value ¢ can not be
determined to satisfy both types of errors @ and B, we considered discrimination
curve that gives the maximum d such that it can be discriminated from ¢ for a
given @ and B. We also considered an algorithm to compute the minimum dwell
time which is needed to discriminate at the given @ and B for the Poisson counts
and proved its convergence property.

For the Poisson-power function distribution, we reject Hp if X<c'. Since a
critical value ¢ can not be determined to satisfy both @ and f, similar to the
Poisson case we considered discrimination curve and computation algorithm to find
the minimum dwell time for the Poisson—power function distribution. We present this

algorithm and an example of computation. It is found that the minimun dwell time
algorithm fails for the Poisson-power function distribution if the aiming error variance

o% is too large relative to the variance 021 of the Gaussian distribution of intensity.

In other words, if £ is too small, we can not find the minimum dwell time for a
given a and 8.

1. Introduction

Let the random variable X be the number of counts for a fixed time interval, and suppose
it has a Poisson distribution with mean A. Consider a hypothesis testing Hjy:A = ¢ versus
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Hy:A=d (d<f). The most powerful test with given probability of Type I emar @ is to be a
left-tail test : Reject Hy, if X<c, where the integer critical value c is chosen to satisfy a.
For the present test, the probability of Type II error is 8= P(accept Hy| H; is true). Note that
we intend that our errors for testing are low.

In radar applications, the quantity e« is the probability of leakage (or leakage rate). This is
the most serious risk and should be made as small as possible. The quantity A is the
probability of false alarm (or false alarm rate).

Since we assume the counts X has a Poisson distribution, the two types of errors are

[4 e ~tti
xZgio o (1.1

a ==
and

B=1- );:O-ex# (12)
One can select ¢ as the largest integer so that P[X < c¢] <a. With ¢ now specified, there is
a unique d that matches the given B. Note that, for a fixed ¢ a small d gives a smaller 8.
However, in general, a critical value ¢ can not be determined to satisfy both @ and A that are
specified. To describe the operating characteristics of this test, instead of minimizing 8, we
determine the largest d that can be discriminated from the given f with given a and A.

Since ¢ is an integer, there is an interval of #’s that, for the given a, yields the same c¢
and hence d. Hence, plotting this maximum d versus ¢ for the given @ and 8 gives a
step function increasing in ¢ with small steps parameterized with the test of hypothesis
critical values ¢=10,1,2,:*. The plot of d versus ¢ is called the discrimination curve
(Beyer et al. (1987)), where d is the maximum mean counts such that d can be
discriminated from ¢ for a given @ and B. The minimum dwell time 7° is obtained from
the intersection of the dwell time line with the discrimination possible region in the
discrimination curve.

In section 2, we study the discrimination curve for Poisson distribution and present some
results as figures. In section 3, we present discrimination curve and the method of its
computation for the Poisson-power function distribution. In section 4, we investigate the
minimum dwell time algorithm for the Poisson distribution and we show that this algorithm
process must terminate. In section 5, we consider an algorithm for the minimum dwell time
and actual errors with minimum dwell time for the Poisson-power function distribution. We
present an example of computation for the minimum dwell time algorithm.
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2. Discrimination Curve for Poisson

The discrimination curve for the Poisson distribution comes from the following well-known
probability theory. Consider a Poisson stochastic process (X(z)|0< r< o), where each X(7)
has a Poisson distribution with parameter Az, A> 0. For a definition and statement of
properties of a Poisson stochastic process, see Cox and Isham (1980). It is not necessary to
know that the process of generating counts is a Poisson process; it only necessary to know

that the random counts X has a Poisson distribution.

th

Let W; be the waiting time between the (i —1) * count and the "™ count. Then the waiting

time W, is independent and exponentially distributed with mean 1/A. Now
P X(D<c]=P{W+W+--+W_.>}. 2.1

c+1
Also the quantities 2AW; have a x* distribution with 2 d.f, so that 24 ZIW,- ~ 2%

Then equation (2.1) becomes

Pl X(D<c)l= Plxbecsn> 247). 2.2)
Under H,, let X= X(z) with Ac=¢. Then
PX(D)<cl = Plx5cen> 28} = 1= Fyca(28), (2.3)

where F 41 is the continuous cdf. for a # distributed random variable with 2(c+1) d.f.

Therefore, from (2.3), for a given a

t= %Fz_(lcﬂ)(l*a). 2.4)
Similarly, for a given S,
d= —é Faton(B. 2.5)

The plot of d versus ¢ is called the discrimination curve, where & is the maximum mean
counts such that d can be discriminated from ¢ for a given @ and B. The values of (¢,d)
computed is called an operating point. If the operating point (¢, d) is below the discrimination
curve then ¢ and d can be discriminated for a given @ and #; and if not, then they can
not be statistically discriminated. We say the regions as "discrimination possible region” and
"discrimination impossible region”, respectively.

We can now obtain curves of operating points. Note that the bottom left-most point ¢=0
has the coordinates (#d)=(—loga, —log(l1—A)). We make this step function will also
joint the bottom left-most point to the horizontal axis.
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Figure 1B. Detailed Discrimination Curve for a Given « and A
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Figure 1A shows graphs of discrimination curve for @ = (0.01 and various values of
B=1(0.05,0.01,0.001). Figure 1B is the detailed graph in the box in Figure 1A. Note that
we can compute (2.4) and (25) via d= GAMINV(S,c+1) and t= GAMINV(1—a, c+1),
respectively as a function of ¢, where GAMINV is a SAS quantile function (SAS 1991). Note
also that we can compute & and ¢ using CINV which is a chi-square inverse function:
d=0.5*CINV (8, 2(c+1)) and ¢t=0.5*CINV(1—a, 2(c+1)).

3. Poisson—power Function Distribution and Discrimination Curve

In an application of radar discrimination problem, Kim(1991) considered aiming errors of the
beam which are deviations between the center of the beam and the center of the object for an
object interrogation and make the following two assumptions about aiming errors:

(i) The beam has a circular Gaussian distribution of intensity with standard deviation ¢;. This

distribution is on a plane perpendicular to the beam axis.
(ii) Aiming errors yield a circular Gaussian distribution of the beam axis relative to the object

center. The standard deviation of the distribution is oy .

Kim(1994) derived the exact probability distribution of the counts in presence of aiming errors.
We shall first review the distribution briefly. Beckman and Johnson(1987) give evidence from
an experiment that the beam has a Pearson Type W distribution instead of a circular
Gaussian distribution in assumption (i). This distribution is much heavier in the tails than is
the Gaussian. Kim(1994) compared a circular Gaussian distribution with a Pearson Type VI

distribution for scattering distribution of the neutron counts.
Under the assumption of a Poisson distribution of counts and aiming errors, the probability
of exactly x neutron counts, x=20,1,2,:-- being counted is

1 T —agr (@i e e dodo,
P(x|A) = ! f_mf_me A*e ZTO'ZT 3.1)

where A4 is defined by
/{ — k' e _(Wf“'mg)/(z o'xz) (32)
where % represents the mean return neutron counts without aiming errors. In (3.2) ¢; is a

standard deviation of the circular Gaussian intensity distribution of the beam at the object, and
(@, wy) are coordinates of points on beam cross section. 6, in (3.1) is a standard deviation

of the circular Gaussian aiming error distribution of the beam relative to the object.
Using the polar coordinates transformation, and letting

L = (0'1/0'2)2 3.3)
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we obtain
P(xld) = —1— Hx+1:8), 3.4)
B x!
where
Hv; k) = fkt"_le_'dt (35)
s 0 o

is the incomplete gamma function,

We have defined in (3.2) that % be the mean number of return neutron signals counted
with the assumption that no aiming errors are made in the measurement of the parameters
and that the beam is perfectly centered on .the object. In this case, A= &.

The probability distribution in (3.4) can be written as followings:

. _ l k —w x+ 2 -1
Pk, 1) = k,x!foe © dw

- —xlT E (e ")

where E, represents expected value of @, and @ has a probability distribution

Aw) = Lk f0’ T, L1, 0<w<k (3.6)

The distribution in (3.6) is called the power—function distribution.  From the above
expression, the distribution in (3.4) is a special case of a compound Poisson distribution where
@ has a power-function distribution, and @ is a mean of the Poisson distribution. Thus the
probability distribution represented by (3.4) may be reasonably called a Poisson-power function
distribution. See Johnson and Kotz(1970) for the definition of compound Poisson distribution.
Kim(1995) proved some properties such as unimodality, stochastical ordering, computational
recursion formula,, monotone likelihood ratio property, of the distribution.

For the Poisson-power function distribution, the definition of the discrimination curve is the
same to the Poisson distribution in section 2. Two types of error rates for the hypothesis
testing to the Poisson-power function distribution are

[

a= B Pxt )= B Ao rartin= 2 At L) popeyg) 37)

=o tix! =o tfN(x+1)
and
1Y ) _q_ s A (x+1) :
A=1 EOP(x,d,I) 1 Z0o d Nt D) F(d;x+ 1) (3.8

where F(t;x+ L) is the gamma c.d.f. with shape parameter x+ {, and I' is the complete
gamma function. Let

_ s A N(x+1) .
C(k)= x2=:0 E Tzt D) F(kx+ 1) 3.9

Then
a= C(D (3.10)
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and

C(d=1-8 (3.11D)
The operating points (%,d) that determine the discrimination curve are obtained for each
c=0,1,2,"** by solving for £ in (3.10) and for 4 in (3.11). It is not possible to give closed
form formulae for ¢ and d similar to (2.4) and (2.5). Because Poisson-power function
distribution has stochastical ordering property (See Kim (1995)), C(%k) is a continuous and
decreasing function of k We solve (3.10) by an iterative secant method;

_ Mt-(a—C(¢

where At,= t,'_t,'~1 and AC,= C(t,)“‘C(t,_l) Slmllarly

4d;(1-8—-C(dy)
- yaor

where 4dd;=d;—d;_; and 4AC;= C(d)—C(d;_y).

Initial values are chosen to be dy=—1log(1—2p), d, = dy+1, and ty=—loge and # = #/2 for
¢=0 and all {. Initial values for c¢+1 were chosen to be the solution ¢ and d for the previous
¢. For a=0.05, the convergence criterion was |4#;]<.01 and |a—P(2)I<10 ~*. No convergence

difficulties occurred; convergence almost always was obtained in less than 8 iterations of
(3.12) and (3.13).

d,’+1= d" (3.13)
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Figure 2. Discrimination Curve for Poisson-power function distribution (@ = 8= 0.05)
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Figure 2 compares the discrimination curves for choices of { =5,3,and 2 to the
Poisson-power function distribution with that of the Poisson distribution. Note that Kim(1995)
proved the fact that these curves converge to the curve in the Poisson distribution as

{ —oo. Note also that smaller values of £ yield smaller discrimination possible regions.

4. Minimum Dwell Time Algorithm for Poisson

Discrimination curve introduced in section 2 can be used to compute the minimum dwell
time needed to discriminate at the given @ and B. We note the formulae for the mean ¢
and d in terms of the dwell time ¢ and the mean counts rates t7 and d:

t=1rt and d=1d".
The plot of this curve in the (# d) plane is a straight line L through the origin with slope
d @/t The minimum dwell time z° is obtained from the intersection of L with the
discrimination possible region. That is, at the point where the line first enters the
discrimination possible region. See Figure 2. The minimum dwell time r* is an increasing
piecewise continuous function of the slope d (/4™ Consequently, as expected, ¢ decreased

¢ increases.

as the d” decreases or
In this section, we consider an algorithm to compute the minimum dwell time needed to
discriminate at the given @ and B and actual errors with the minimum dwell time. Schultz
and Vairin (1987) study the simulation for discrimination algorithm design and evaluation.
Let @ and B be given. Let + be the mean rate under Hj and let d ( be the mean rate
under H,. Since we assume the counts X has a Poisson distribution, we have

(n

—rt (N x
P(x|Hy) = £ Ec,” ). x=0,1,2,- @
and » o
—rd ) x
Pl Hy) = €——F00 - 5mp,1,2, 42)

Choose the dwell time 7 as the smallest dwell time such that there exists an integer ¢
such that if

a9 = 3 PxlHy) 43)
and

B =1- ZCIOP(xIHl) 4.4)

=
then
a¥<e and BYU9<B. (45)
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The resulting a SC) and A 56’ are the actual Type I error rate and the Type II error rate with

the minimum dwell time, respectively. We shall repeat the computation algorithm in more
detail. The SAS program of the algorithm is available from the author.

<Algorithm>
1) Let @ and B be given.
2) Let €>0 be a small number. Put r=e&.
3) Let c¢ take on in succession on the values 0,1,2,.
4) Calculate @ and B9. Note that @' is an increasing function of ¢ and B8{? is a
decreasing function of c.
5) If @ ?<e then determine if A< 8.
6) If both conditions hold, we have the minimum dwell time and stop.
7) If the first condition holds, but the second condition does not, we increase ¢ and repeat.

8) If both conditions fail, we replace ¢ by 2& and repeat the computations until we find a
r such that (4.5) is satisfied.

<Example 1> We choose a= (.05, t?=1.0, and d” =0.1. We obtain the results
in table 1. Note that TALPHA represents actual type I error rate and TBETA represents
actual type II error rate, and TAU represents minimum dwell time for a given ALPHA and
BETA.
OBS BETA C TAU TALPHA TBETA

1 0000 30 4070 0.04983  0.000000
2 0005 4 920 0.048580  0.002574
3 0010 3 7.80  0.048477  0.008334
4 0015 3 7.80  0.048477  0.008334
5 0020 3 7.80  0.048477  0.008334
6 0025 3 780 0048477  0.008334
7 0030 2 630 0049846  0.026183
8 0035 2 630 0049846  0.026183
9 0.040 2 630 0049846  0.026183
10 0045 2 6.30 0049846  0.026183
11 0.050 2 6.30 0049846  0.026183
12 0055 2 6.30 0049846  0.026183
13 0.060 2 6.30 0049846  0.026183
14 0065 2 630 0049846  0.026183
15 0070 2 630 0049846  0.026183
16 0075 2 630 0049846  0.026183
17 0.080 2 630  0.049846  0.026183
18 0.085 1 475 0049747  0.082720
19  0.090 1 475 0049747  0.082720
20  0.09% 1 475  0.049747  0.082720
21 0.100 1 475  0.049747  0.082720

<table 1> Results for the Algorithm and a= .05, t? =1, and d” = .1.
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We shall show that this process of the algorithm must terminate. Let @ and B be given.
Assume that the independent Poisson random variable X has mean A. Now
a=P(X<cld=t)= P(xycrn > 2t) (46)

and
B=P(X> cli=d) = P( Yo+ <2d) 47

where x22(0+1) is a Chi-square distributed random variable with 2(c+1) df By the Central
Limit Theorem,

1 _ @ 2t=2(ctl) y _
a=1 ¢( Zml ) 61(6) (4.8)

and

_ 2d—2(c+1)
B= 0( oV o+l ) +&5(0) (49)
where &,(¢)—0 and &,(c)—0 as ¢—o0 and @ is the cdf. of the standard normal random
variable. Hence

ﬂc-\/—%_il—ll =0 '(1—a—e/(0) (4.10)

—dicr%l — 0 (B—e,0) (4.11)

where @ _l(x) is the inverse function of the cumulative standard normal distribution function.
Let (£(¢),d(c)) be the discrimination curve defined by (2.4) and (25) in section 2.
Therefore,

and

tH) = (c+D)+Vectl -0 '1—a—g(0) (4.12)
Similarly,
d(0) = (c+1)+Vc+l - 0 (B—e(0) (4.13)

where &,(c)—0 as c— oo,

The above two formulae (4.12) and (4.13) shows that d(c)/t(c¢)—1 as c— 0. Therefore,
any half-line starting at the origin with positive slope less than 1 must eventually intersect
the discrimination curve and will eventually remain completely under the curve. This proves
that for the Poisson counts the minimum dwell time problem has a solution. Further, by
taking the step sizes small enough, the algorithm will find the least solution in 7 with
arbitrary accuracy.

5. Minimum Dwell Time for the Poisson-power Function Distribution

Similar to the Poisson case, the discrimination curve explained in section 3 can be used to
compute the minimum dwell time for the Poisson-power function distribution needed to
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discriminate at the given « and §.

In this Section, we consider an algorithm to compute the minimum dwell time for the
Poisson-power function distribution and actual errors with the minimum dwell time. Schultz
and Vairin(1987) studied the simulation for discrimination algorithm design and evaluation. The
minimum dwell time z° for the Poisson-power function distribution is also an increasing piecewise
continuous function of the slope @ ?/t” and, as expected, " decreased as the d‘” decreases ar
# increases. Note that a path of (,d) operating points representing increasing dwell times is a
line segment beginning at the origin and that it may not intersect a discrimination curve for

some £ oo, This situation is described by an example.
Let @, B and 1 be given. Let £ be the mean rate under Hy and let d‘” be the mean rate
under H;. For the Poisson-power function distribution, we have

P(x|Hy) = ‘ml)—,;‘ 7(x+£;rk(’)). x=0,1,2, (5.1)
and
P(x|Hy) = -g(—f),—x, Hx+t; ed?), x=0,1,2,- (5.2)

where ¥(v; k)is the incomplete gamma function defined in (3.5).
Since we assume d7¢t? put d = pt"” where o= t"/d"<1. Let t=1rt? and
d= pt. To find the minimum dwell time, choose the dwell time r as the smallest dwell time

such that there exists an integer ¢ such that if

e L& Axt LD
@ = = x2=_‘.0 Tx+D) <a (5.3)

an

. _ L S AHx+L;p0)
B = 1- (pt)’ x2=0 [x(x+1) < B (5.4)

The resulting @~ and A" in (5.3) and (5.4) are actual Type I error rate and actual Type II
error rate, respectively. The algorithm for minimum dwell time and actual errors for the
Poisson—-power function distribution is almost the same to the Poisson case in section 4. The
SAS program of the algorithm is also available from the author.

It is found that the algorithm fails if the aiming error variance 0‘% is too large relative to

the variance 0"f of the Gaussian distribution of intensity across the beam.

<Example 2> Consider the hypothesis of Hy: k=1t vs. H; : k= pt, where p=dft{1. In
section 3, we showed that the Neyman-Pearson test for the Poisson-power function distribution is
a left-tail test. For this reason, for a given @ and A in the interval (0,1), we choose the
smallest f that satisfies (5.3) and (5.4), where for each f, the c¢ is the largest integer
critical value.
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By a different calculation using an integration by parts, the quantities in (53) and (54) can be
written as

o =1 Wet1; 00—t 2 A0 +c+1; D

MNe+1) 6o
and
g = Hetlioh)= (o) * AL +ctliph) (5.6)

Nc+1)

For an example of the results for algorithm, we choose the following parameter value:
t=1 p=0.1 a=p5=0.00

We obtain the results in table 2. Note that CALPHA represents actual type I error rate and
CBETA represents actual type Il error rate, and T represents minimum dwell time for a given
ALPHA and BETA.

Note that for £ <1.2, there is no solution to the problem attempting to solve. This is the
situation when the aiming error variance is too large relative to the variance of the Gaussian
distribution of intensity across the beam. In other words, if the ratio of two variances in £ is

too small, we can not find the minimum dwell time for a given a and 8.

ALPHA BETA L HO C CALPHA CBETA
0.05 0.05 6.3 2 0.049846 0.026183
005 005 10.0 8 2 0.027984 0.038040
0.05 0.05 7.0 8 2 0.038271 0.035024
0.05 0.05 6.0 8 2 0.045089 0.033540
0.05 0.05 50 9 2 0.035086 0.042299
005 005 4.0 9 2 0.049756 0.039043
005 005 3.0 14 3 0.043584 0.026510
0.05 0.05 2.8 15 3 0.042096 0.031563
0.05 0.05 2.6 16 3 0.042498 0.036801
0.05 0.05 24 17 3 0.044711 0.042082
0.05 0.05 2.2 18 3 0.048883 0.047235
0.05 0.05 2.0 25 4 0.048000 0.040723
005 005 18 34 5  0.049281 0.042484
0.05 0.05 1.6 54 7 0.049893 0.049358

0.05 0.05 14 181
0.05 0.05 1.2 2065 170
005 005 10 3401 170

D
[=]

0.049667  0.048507

<Table 2> Results of the algorithm computation
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6. Conclusion

Discrimination curve plots the maximum d that can be discriminated from ¢ for a given a
and A. It is a step function increasing in ¢ with small steps parameterized with the critical
values ¢=10,1,2,---. Discrimination curve can be used to compute the minimum dwell time
needed to discriminate at the given @ and . The minimum dwell time " is obtained from
the intersection of the dwell time line L with the discrimination possible region. We showed
that L=d(c)/t(c)—1 as c— 0 for the Poisson distribution. That is, any half-line starting
at the origin with positive slope less than 1 must eventually intersect the discrimination curve
and will eventually remain completely under the curve. Therefore, the minimum dwell time
problem has a solution for the Poisson counts.

For the Poisson-power function distribution, the definition of discrimination curve is similar
to Poisson case. It is found that the minimum dwell time algorithm for the Poisson-power

function distribution fails if the aiming error variance 0% is too large relative to the variance

o‘% of the Gaussian distribution of intensity across the beam. In other words, if the ratio of two

variances £ is too small, we can not find the minimum dwell time for a given @ and A.
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