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The Counting Process of Which
the Intensity Function Depends on States

Jeong Hyun Parkl)

Abstract

In this paper we are concered with the counting processes with intensity function
2,(H), where g,(f) not only depends on ¢ but #. It is shown that under certain
conditions the number of events in [0, #] follows a generalizes Poisson distribution.
A counting process is also provided such that g{#)# g/#) for i#j and the number

of events in [0, #] has a transformed geometric distribution.

1. Introduction

The Poisson distribution has been generalized in many ways. Rao and Rubin (1964),
Chon (1960) and Singh (1966) introduced a generalized Poisson distribution. Consul and Jain
(1970) presented a new generalized Poisson distribution with two parameter (8, ). Recently,
Consul (1988) investigated some models leading to the generalized Poisson distribution and
Consul (1989) introduced a generalized Poisson process for which the number of events in
interval [0, t] is generalized Poisson distributed with parameters (8¢, A9.

In Poisson processes, the intensity function is £,(f) = A for all »=1,2, -, and the
intensity function of nonhomogeneous Poisson process is g,(8) = A(H for all n=1, 2, ---.

Therefore, the Poisson process and nonhomogeneous Poisson process have intensity function
which does not depend on state n. Consul (1989) proposed a generalized Poisson process of
which that intensity function depends on state n.

In this paper, we provide some conditions under which the number of events in [0, £
follows a generalized Poisson distribution, and show that the definition of a generalized
Poisson process defined by Consul(1989) is not well-defined. In section 2, we propose a
counting process such that the intensity function is g+ g{# for i#j.
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Let {M® | ¢t=0} be a counting process having jump magnitute 1. Then counting process
{N(D | t=0} is satisfies
P{N(t+h)—N(8) =2} = o(h). (LD
Suppose that P{N(t+h)—M# = 1| Mt)=mn}=g,(t, h) and g,(t,h) is a polynomial
function with respect to % in which the constant term is zero;
gt h) = g(Dh + (DB + -+ = g,(D h + o(h).
Then
P{N(t+h)—N(t) = 1| N(t)=n} = g,(8) h+o(h) (1.2)
and
PIN(t+h)—N(8) = 0| MH)=n} =1 —g,(8) h+o(h)..
Now g,(9 is called the intensity function of counting process {MD| t=0}.

By Equations (1.1) and (1.2),
P{N(t+h)=n} = P{N(t+h)—N®=0| MH=n}P{NH)=n}

+P(N(t+h)~ND=1| N()=n—1}P(N()=n—1}

+ 3 PINE+R) =N =i | N = n—i) V() = n—1)
= {1—g,(£) k} PIN(D) = n} +g,1(§) RP{N() = n—1} +o(h).

Hence,

P{M(t+h) = nh}—P{N(t)=ﬁL = g,() P(N(H) = n)

+ o a(DPN(=n—1)+ LB

Letting #— 0, we obtain the differential equation

iﬂ%}ﬂ = g.() PIN(H=n} + g,_.() P{N()=n—1}.

The solution of the above equation is

~ | gddat ADat — felDar
PIMt)=n)=e Je [ 22 (D PIN() = n—1)e [o0t s+ e Joor 5
If the countig process is a Poisson or nonhomogeneous Poisson, we know that k) = 1 and
k, =0 (n=1). The constants {ky, &y, ky, -} is called the integral constants of the

corresponding counting process. From (1.3) we can see that the distribution of N(#, the
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number of events in interval [0, t], depends on g£,(f) and g£,-:(®. It is well-known that

g,(t) = A for all #n is a necessary condition for the counting process to be a Poisson process
with rate A. Similarly, £,(f) = A(® for all # is necessary for the counting process to be a

nonhomogeneous Poisson process with intensity function A(#). As can be seen, £,(? does
not depend on 7 for the cases of Poisson and nonhomogeneous Poisson processes. In general,

however, £,() depends on 7 in generalized Poisson processes.

2. P-process

Let L Abdt= f AbHdt—C, where C is a integral constant of A¥).

The function A is said to be a t-zero function if [ f f(t)dt] n=0.
. t=

[Definition 11 The counting process {M#) | t=0)} is said to be a polynomial process
(P-process) with intensity function g,(f) if

(i) MO0) =0,
(i) PINCt+h)—NH=1|ND=mn}=g(Dh+o(h)

where —oo ¢ [fg,,(t)dt]t=0< 0o,
(iii) P{N(t+h) —N(D=>2| N(H) =n}=o(h) for each n=0,1, 2, -.

If g, = A for each n=0,1, 2, -+, then the P-process is a Poisson process with rate

A, and if g,(f) = A(#) for each n =0, 1, 2, -, then the P-process is a nonhomogeneous

Poisson process with intensity function A(#).
Let P,(H = P{M# = n}. Then, from the definition and (1.3), we obtain that

Py(p) = koexp(— Igo(t)dt).
and for n>1,
Py($) = exp(~ [g0d)[ [ £2-1(DPar(D) exp( [ 2D at)a]
+ k, exp(-— Lg,.(t) dt),

where ky, k;, --- are constants,
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[Proposition 1] If {M® | t=0} is a P-process with intensity function £,(#) , then

(1) gfHh = — iggg

2 g8 = g"“(;)n(Pt;‘l(t) — g:gg n=1.

By the boundary condition Py(0) =1 and P,(0) =0 (n=1), we obtain the following :

[Theorem 2] Let {M D | t=0} be a P-process with intensity function £,(#). Then,

(1) gy(#) is a t-zero function if and only if & = 1.

(2) g1 (P, (D exp(fg,,(t)dt) (n=>=1) is a t-zero function if and only if &, = 0.

(Proof) (1) By the boundary condition Py(0) = 1,

2o(H be a t-zero function = [— f (D dt] =0
* t=0

= Py(0) = kyexp(0) =1

= ky =1
- Py(0) = [exp(Lgo(t‘)dt)]t=n =1
= £o(®) be a t-zero function.

(2) By the boundary condition P,(0) =0 (n=1),

Zn1() Pp_1(2) eXp(fg,,(t)dt) (n=1) is a t-zero function

= kaexp(~ [£n(Dd) = P(0) =0

= ky,=10
- P0) = [exp(-— J:gn(t)dt)ign—l(t)Pn—l(t) exp(lgn(t)dt)dt] =0

= [[em P exp( [eaa] =0

- En1(DOP, (D exp(fg,,( t)dt) (n=1) is a t-zero function. [
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[Definition 2] The P-process {M# | t=0} is called a strongly P-process if
ky=1 and k,= 0(n=1).

[Proposition 3] If {M#|¢t=0} is a strongly P-process with intensity function g,(?,

then
20(0) = P (0) and P ,(0) =0 (n=>2).

(Proof) For n=>1,

o OO oy [t

- [ J:gn—l(t) P, (%) exp( Ig"( D dt) a’t] .

t==()

Since {M#) | ¢t=0} is a strongly P-process, 2, = 0. By [Theorem 2],

[f_gn—l(t) P,i(D exp( J:g,,(t) dt)dt] = 0.

Hence,

gn—l(O)Pn—l(O) _Pﬂ(O) =
£,(0) ’

which implies that
2, 1(0)P,_,(0) — P ,(0) =0 .

Taking 7= 1. By the boundary condition Py(0) =1,
20(0) = P ,(0).
If n=22, P,(0) =0 and thus F ,(0) = 0. ]

The Poisson process is a strongly P-process because gy(#) = A is a t-zero function, and
nn—1
(O Por() exo( [2ulDat) = £ Er

is a t-zero function. For the case of nonhomogeneous Poisson processes, if intensity function

A(#) is a t-zero function, then the nonhomogeneous Poisson process is a strongly P-process.

The following example shows that there exists a strongly P-process such that
g{8) # gi(#) for some i, j.
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[Example 1] Let the counting process {M® | t=0} satisfy
(1) N©O =0,

) PMM+M—N®=4IM&=O%=@ A

T 1+ 6Mt

)h+o(h),

[/

3) PN(t+h) — N(t)-llN(t)—l}—( ~

)h+o(h) where 0< A< 1,

(4) P{N(t+h)—NO=1|Mt)=mn}=Ah+o(h), n=2,3,4, -,
5) P{N(t+h) —NDH=2| N&)=n}=o0(h) for cach =0,1, 2,

Since gy(H =6— I—'f/{@/l—t is a t-zero function, 2, = 1 by Theorem 2. and

P =e 1+ .
Since

go(1) Py(1) exp(fgl(t)dt) = (0 —6t+ szlt)exp( 10/“,{ )

is a t-zero function, by Theorem 2, k; = 0. Thus we obtain
Py() = bte %1 - Q).

For n=2,

&n1 () Ppy() exD( Lgn(t)dt) = ﬁ%ﬁ !

is a t-zero function. Also by Theorem 2, k,=0 and we obtain

pup = {07 ,-ar

n!

Thus counting process {M#) | ¢t=0} is a strongly P-process and the distribution of number

of events in the interval [0, tl is
—ot _
e “(1+ 464, n=_

PIN(H=n) = | Ote (1 =N, n=1
—(%tl"vg“", n=29,34,

The above distribution is a generalized Poisson distribution with parameters (8¢ A) defined

by Rao and Rubin (1964). For convenience, this strongly P-process is called to be a
(0,1)-generalized Poisson process. ]
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The following example is a P-process but not strongly P-process.

[Example 2] Let counting process {M#) | t=0} satisfy

(1) NWO =0,

2) P{N(t+h)—NMH=1|Nt)=mn}=6h+o(h), n=0,3,4,5, -,
_ - = (p_ 208

@ PN+ =N = LI M) =1} = (6 = 53755 b+ o(h),

@) PINGt+R) —NH=1| N =2} = (—l—i-g_—j)h+o(h) where 0<A< 1,

(5) P{N(t+h) —N(t)=2| N(t) = n} = o(h) for each n=0,1, 2, .

Since £,(® is a t-zero function except 7 =1 and

[[aoa]_, = [[{o-2%r)], ., = -2m2ce

we know that counting process {M# | t=0} is a P-process.
By Theorem 2, g,(#) = 6 is a t-zero function imply /&y = 1. However,

w0 oo [0at) = oot o 3 )

___ 6
(2 + 6AD)?

is not a t-zero function. Thus {M® | £=0} is not a strongly P-process. In this case we get
the integral constants %2, = 1/24 and 0= ky = k3 = ---.
The distribution of number of events in the interval [0, t] is the following

e * n=0

ore (1 +-%L), n=1
== 00 o1 ), n=2

{607 ,-an n=3,4, .

For convenience, we call the above distribution by (1,2)-generalized Poisson distribution with

parameters (8¢, A) and the associated P-process (1,2)-generalized Poisson process with

parameters (6%, A). L]
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Consul and Jain (1973) presented a new generalized Poisson distribution with two
parameters # and A. The definition of generalized Poisson distribution is as follows :

[Definition] (Consul and Jain) The discrete random variable X is said to be a generalized

Poisson distribution with parameters (@, A) if a probability mass function of X is

CEE ) R

Px(8,2) = x
0, for x> m, when A<0Q and otherwize

, if x=0,1,2, -

where >0, max(—1, —8/m)<A<1 and m(=4) is the largest positive for which
6+ mA> (0 when A is negative.

Consul (1989) introduced a new generalized Poisson process where the number of changes
M® in an interval [0, ] has a generalized Poisson distribution with parameters (8¢, A?).
He made a suggestion to adopt four axioms of new generalized Poisson process. The four
axioms are the following :

(Axiom 1) N(0) = 0.

(Axiom 2) For any t>0, O0<P{MH>0}<1.

(Axiom 3) Direct transitions from state { are possible only to state Z+1 and not to the
higher states; that is, for any #)0, in sufficiently small intervals of duration #&,
at most one event can occur.

(Axiom 4) P{Mt+h) =N =0|ND=n}=1— (6 +nD)h+o(h)

_ _ o (0 (n—=DNhe*
From Axioms, we know that a new generalized Poisson process is a P-process. Consul

insisted that the integral constants of new generalized Poisson process are ky=1 and
k,=0(n=1), and the distribution of number of events in interval [0, t] is a new

generalized Poisson with parameters (6%, Af). Therefore if Consul's results are correct, the
new generalized Poisson process is a strongly P-process. But, under the above Axioms, we
cannot obtain that the distribution of number of events in interval [0, t] is a new generalized
Poisson with parameters (8t Af). Moreover, the definition of new generalized Poisson process
is not well-defined.

Suppose the above counting process is a strongly P-process and the distribution of number
of events in interval [0, t] is a new generalized Poisson with parameters (8¢, A7).
Then, by Proposition 1,
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g = — };zgg

and

o= ST Ll

But, since gy(f) =6, Py(t) =e * and P\(§) = bte s

a0 =1l -n+@+a..

Thus g,() = —lt*(e’" —1) + (8 + A) is not equal to the result of Axiom 4.

Hence, the counting process of which the distribution of number of events in interval [0, t] is

a new generalized Poisson with parameters (8¢ A®) is not a P-process. It is because g£;(?)

does not satisfy
—o0 ¢ [fgl(t)dt]t=n< o,

Now, we show that Axiom 4 is contradicted to Axiom 3.
From Axiom 3,

P{N(t+h) —NH=22| Mt)=x} = o(h) for each x=10,1, 2, - .
Note that

1 = gop{N(t+h)—N(t)=i|N(t)=x)
— PNCt+h) —N(H =01 MD=x} + PINCt+h) —NH =11 MH=x)

+ P(M(t+h) —N(H=2| N(H)=x}.

Then
olh) = P(N(t+h) — N =2| N()=x}

=1—PNt+h) —NH=0| NHp=x} — P{(NMt+h) —N() =1| MOH=x}.

Taking x = 0, by Axiom 4,
P(N(t +h) —NH=22| M1t)=0)
=1— P{N(t+h) —NH =0 N(#) =0} —P{Mt+h) — N = 1] N#) =0}
= 6h — 6he " + o(h)
+ o(h).
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This is a contradiction to Axiom 3. Therefore, the definition of a generalized Poisson process
is not well-defined.

3. Transformed Geometric Poisson process

Let X be a geometric random variable. Then random variable Y= X—1 is called to be
transformed geometric. In this section, we introduce a P-process for which the distribution of

number of events in interval [0, t] is transformed geomelric and g{H +g(Hh for each

i+j(i,7=0,1,2,").

[Definition 3] The P-process {M® | t=0} is said to be a transgformed geometric
Poisson process with intensity function A#) if

M AR0)=0

(i) 0<AHC1 for each t=0

Qi) gD = (n +1)~ffﬁ_—’%—f .

[Theorem 3] Let {M® | t=0} be a transformed geometric Poisson process with intensity
function A¥#. Then the number of events in interval [0, t] is a transformed geometric
distribution with parameter (1- A#f) and the integral constants of {M#)|t=0} are
k,= (—1)".

(Proof) Since Py() = kg exp(— Lgo(t) dt) = ky(1 —AH) and

gty = AU

is a t-zero function, k; = 1 by [Theorem 2].

Hence,

Py(t) = (1 —RH).

P() = exp(— [&1(0d) [ [eo(t Po() exo( [Lex(Dat)] +Riexo(— [ al

_ _ 2 f () _ 2
= (1 -A9) f (1= AD)? dt+ k(1 — A1)
= (1 —AD) + k(1 — AN
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The boundary condition P;(0) = 0 implies that 2, = —1. Then,
P(H = A — RAD).
To show that P,(H) = AH"(1 — Af)), we use the mathematical induction.

Suppose P,-1( = AD™" (1 — AD). Then
P.() = exp(— [0a)[ [lgu1(dPar(t) exo( [£ulDa)a] + kuexp(~ [l

= —f(t))"“ﬁ%dt—i—kn(l — At

= B (=D*AY L —AD) + ko1 =A™,

The boundary condition P,(0) =0 implies that %,= (—1)". Hence, we obtain
P,(t) = AH"(1 — AD). O

[Example 3] Let A =1—e % Then A0)=0 and 0 < A1) <.

Taking g,(f) = (n +1)‘%ﬂ_—%%,

g0 =(n+1)8
which implies
P(y=(1Q—e ™M"e*
Therefore, the number of events in interval [0, t] is a transformed geometric distribution with

parameter A =1—e % ]

The following diagram represents that the relation of the generalized Poisson process with
Z,(D and the integral constants.

Strongly P-process < Poisson = gH=A
(ko= 1, 0=k1=kg='")

Strongly P-process ¢ nonhomogeneous Poisson &= g,(8) = A(Y)

(k[):l, 0=k1=kz="')
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“T+ar =0

Strongly P-process <=  (0,1)-generalized Poisson ¢= g, = —1—‘3—,1, n=1
0 n=2
(k0=1' 0=k1=k2=---)
204 -

0= 2% e =1
P-process & (1, 2)-generalized Poisson &= g,(f) = ﬁ n=2
6., n=0,3.4

(k0= 1, k1= 1/2/1, 0=k2= -+)

dfiH)/dt

P-process <«  transformed geometric Poisson = g,(f) = (n+1) 1—AD

(ky=(=1)".
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