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Improvement of Boundary Bias in Nonparametric
Regression via Twicing Techniquel)

Jaekeun Jo?

Abstract

In this paper, twicing technique for the improvement of asymptotic boundary bias in
nonparametric regression is considered. Asymptotic mean squared errors of the
nonparametric regression estimators are derived at the boundary region by twicing
the Nadaraya-Watson and local linear smoothing. Asymptotic biases of the resulting

estimators are of order A° and A° respectively.

1. Introduction

Let X and Y be random variables which can be modelled by
Y=m(X)+e, Ee=0 and Var (&) =v(x),

where m(x) and v(x) are smooth functions specifying the conditional mean and variance
functions of Y given X=x. It is of interest to estimate regression function
m(x)=E(Y|X=x) based on a random sample (X,;,Y,),..,(X,,Y,) from(X,Y).

Monographs such as Hiardle (1990), Wand and Jones (1995) and Fan and Gijbels (1996)
provide a good deal of various nonparametric curve fitting procedures. In this paper we

assume that (x)=¢® for simplicity.
Given a curve estimation procedure m(x)= m(x;x,, -, Xy Y3, -, Y,), twicing estimator

m(x) is defined by the following steps.

Step 1: Compute m(x) and residuals #; at each x;, ri=Y—m(x;),i=1,..,n from
initial svmoothing.

Step 2: Apply the smoothing procedure to (x;,7) at x and obtain
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HH) = (X%, -, Xy P1s oee s ).

Step 3: Define twicing estimator 7 at x as m(x)= m(x) + Hx).

Twicing is a simple modification of original estimator which apply the same smoothing

procedure to smooth residuals. For the definition of residual at x; in Step 1, ﬁ(\_,)(x,-)

(the same version of 7 with all data excluding (x;, Y;)) would be more reasonable estimator

of m. But since there is no difference in the asymptotic results we will define residual as is
given in Step 1 for simplicity. Twicing technique is applied to nonparametric curve estimation
by Stuetzle and Mittal (1979) and related research can be found in Abdous (1995) where as a
way of constructing classes of higher-order kernel functions, iteration of the twicing procedure
is investigated.

In this paper, twicing is applied to the Nadaraya-Watson and local linear smoothing for
nonuniform design density case. Mean squared errors of twicing estimators are derived in
Theorem 1 and 2 especially when the point where estimation is taken place is at the
boundary point. Proofs for the estimation at the interior point is similar and easier than proofs
at the boundary and we do not present them here.

2. Asymptotic boundary MSE of twicing estimator

Under the assumptions such as assumptions on page 220 of Kim and Park (1996), we will
study asymptotic properties of twicing estimator based on the Nadaraya-Watson and local
linear smoothing at the boundary. Unlike estimation at an interior point, estimation near the
boundary requires special treatment since the kernel window is devoid of data for smoothing.
Here, we consider left boundary case since the treatment of right boundary case is analogous.
Suppose that the point at which the estimation is taken place is 0 (we will use notation 0

as a shorthand for Q7).

Theorem 1. Mean squared error of twicing estimator based on the Nadaraya-Watson
smoothing at the left boundary 0 is given by

-~ h2 * 2 2
MSE ( m(0)) = {7 m " (0)yo K (y) + o(h )}

+ 75%(?_(')7 r((K@)*) + o(_n%)

1
where, for nonnegative integer [/, y,(K)= L #'K(u)du is the I'th incomplete moment of
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K and K (w) =T(1—K=)— K(u) and K'(2)=2K(z)— fK(z— wK(w)du is the ‘twicing
kernel’ of Stuetzle and Mittal (1979).

Proof. Let

si(x) = n! ZI(P[K)h(x—xi) 2.1

= (nh) ! ;K( Lz )( x—hx,.)’

!

and let (P,K),,(x)=—%K(—i)(—z) :

The Nadaraya-Watson estimator at a point % is  72(x) = 21w «iY, where each weight is
&

Ki(x—x)
glK,,(x—x,-)

given by w, ;= . We can see easily that twicing estimator m(x) is

m(x) = m(x)+r(x)
= 2 3w, {¥im mx))+ 3wy lm(x) — ) 22)

- Z{w,,;{ m(x;) —m(x)} + m(x).

If x is left boundary point 0,
81(0) = n—l gl(P,K);.(O—x;)

= ROy (B +hf (07 11 (K) + 5 BF (07 11o(K) (23)
+O(RY).

From (2.2), we have

W(0) = 2 3 wo.Yim m(xd)+ 2 wo.dm(x) — m(0)) 24
- leo.;{ m(x) —m(x)} + m(0).

In this case the second term of (2.4) can be approximated by
2% wo.dm(x) = m(0)) = Cy(m, 00+ Cy(m, £,0)h*+o(h?), (25)

where, for

S
I

1
ah  and a,(a)=f_az'K(z)dz, (in particular, a,;,(0)=7,/(K)),
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(a)

Ci(m, 1) =m' (1) () and C,(m, f, u) is a constant factor depending on m, f, #. Since

a;
ag
22w, mx) — m(x)

= 2 wo.{ Culm, 2+ Collm, £,x0H+ Fw o ¥ m(x)) + o(i")},

replacing m by Cy(m, +) and Cy(m,f, - ) in (25), we get

K
leo.icl(m»xi) = CKm,O)-I—hCAm,O)%-&-O(hZ),

g,wo.icz(m,f,xi) = Cy(m, £,0)+ O h).

Hence,

3w Cx) = m(x)) = HCi(m,0) + K C (om0 .

+ B2 Cy(m, £,0) + X 13).

(i) Approximation of bias
From (2.5) and (2.6), the bias of m(0) can be approximated up to order X A%) by
2| 7’0(K) T Y 71(K) 2
h {C 1(m,0) 71(K)]— hm (0){ ?’o(K)] .

For nonnegative integers /, since incomplete moments of K (g)(u)=70(116K( u) are given

by 7,(K (0))=;—1§%, it is easy to show that incomplete moments of twicing kernel
0

K'y=2K )~ K y*K () are

n(Kw) =0
7(K'0) = 2r(K @) =2 (K @)r(K @)+ 7K @)
_ _2[ n(K) )2 »
7o(K) | -

Hence, asymptotic bias of m(0) is given by

2
“%‘ m’ " (0) 7. K'gy) + ol h?).

(ii) Approximation of variance

From (2.4), stochastic terms of #(0) can be written as
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3 (2w0.= B wa s, (V= mx), @7

_Kulxj—x) _h . 1
"ﬂhxi)au( a;) + 0( n ) Since K (g(2) = 7 o B K(u),

the sum of products of two weights in (2.7) can be approximated by

> wows,
= 0,iN x,,i

[iosmatay * L)

N S S S _ 1
= nf(omuo{" B Toyaray Kitxi— K0 "f’}*o(n)

nhf(O%y%(K) [ fol K( 0—x; _u)K(u)a’u]-i-O( nzlhz +—%l—)
O i
_ m(x K)( Xi )+0(—i;).

where w, , can be approximated by

And each weight for Y, in (2.7) is approximated by

2w, i~ glwo,iwzg,-.i = W(ZK(O)_K(O)*K(O))(
: 0—x;
= oy Ko =5 )+o( )

Consequently, variance of m(0) is approximated by

2{ nh}(O) K@(0—x ”)}2"2

nhfz(o) f K o) ()* R0~ hu)duo‘2+0(

O] J; Ko udud + o(547)

- —n—h—}(T)ro((K'm))z)"ero(#)'

Asymptotic bias and variance of twicing estimator based on the local linear smoothing are

given in Theorem 2. The local linear estimator at a point x is m(x)= ﬁlw xiY; where for
&

(P;IQ;,(x)=—}ZK(—;%) (-%)I and s/ (x)=n"" z‘(PIK)h(x—'xi)y

_ (0K (x—x;) = :(2) (P K) y(x— ) @25
nso(2)s () — 5 (%) ’

is the weight for (x;, Y, at x.

E )
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Theorem 2. At the left boundary point (, mean squared error of twicing estimator based

on the local linear smoothing is given by

~ o — [ @ NE
MSE (7(0)) = {21 m “(0)7i(K ') + o4

+7}5‘(%_07 r((K'w)?) + 0(—,117)

1 712%

Uy
7o(K) 7.1(K) K(a).
71(K) 7(K)

where K y(w) =

Proof. Using approximation of s{0) in (2.3), we can obtain

3 wg,m(x) — m(0))

=L2m"(0)( 7}2(1{)—71(1{)73(1{))
2 7o(K)7 o K) — A(K)
+ Dy (m, £,0)h* + Dy(m, £,0)B* + o( h?)

where Dy(m, f,u) and D,(m, f, u) are constant factors depending on m, f, u.

(i) Approximation of bias

Using the same procedures in the proofs of Theorem 1, bias of 72(0) can be approximated

up to O(A*) by

__}im(iv)(o)( 7ol K) =7 1(K)7y 3(K) )2.

4 70(K)7 oK) —AA(K)
1 71(K)
For nonnegative integers / , since incomplete moments of K (y(2) = u_y(K) K(w)
' ® 7ol(K) 7.1(K)
71(B) rAK)

are given by 7,(K )=

incomplete moment

r(Kay)

72(K) 7L K) — 71(K) 7 111(K)
70(1072(1() - 721(10

, it is easy to show that the fourth

of twicing kernel K'(y=2K ()— K )*K () is

= 21(K 1)) = 270(K 1)) 7( K 1)) —87i(K 1))73(K 1)) — 673(K (1))
= —67(Kqy)
_ o B =y By (O )2

7oKy K)—FA(K) | -
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Hence asymptotic bias of m(0) is given by

S m P07 (K ) + ol k).

(ii) Approximation of variance

Stochastic terms of m(0) have been written as
21[210 0.i 121“) 0,; Wy, l}( Yi_ m(xl))

Applying (2.3) to the weight wg , in (2.8) leads to

o~ TABOK0—x) =y (K)(PLK) (0 =)

0-f nA0)(7 o(K)7 o(K) — ¥4 (K))
0—x; _

oy Ko =7+ 0.

Using (2.9), the sum of products of two weights can be approximated by

0—x; -
;Z_‘-‘lwo'jw”"i nhf(o)(K(l)*K(l))( )+O(n D,

+0(n™") (2.9)

Thus each weight for Y; is approximated by

O—x,-
W}?.(O—)(ZK(U— K(l)*K(l))( A )

Consequently, variance of m(0) is approximated by

Zl{ nhf(0) K “’( e )} 4

- —;’;}(T)f K'yy(2) d""z"'o(_h)
L ranero )

3. Concluding Remarks

If the point where estimation is taken place is near the boundary such that x= ah, we

can o¢btain boundary mean squared error of the twicing estimator based on the
Nadaraya-Watson smoothing by
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2
+ iy 1K)+ o( )

~ % 2 2
MSE (m(x)) = {—m"(x)rz(K*<o>)+0(h )}

1
where K ()(2) should be substituted by _aB%T)K( ), where afa)= f_dulK( wdu. And for

the twicing estimator based on the local linear smoothing,
h4

2
MSE ( 7(x)) — {ﬂm(i”)(x)74(lf’*(1))+0(h4)}

+% ro( (K'y)?) + 0(—,217),

Clz(a')
!ao(a) a(a)
ai(a) aya)

‘1 ay(a)
where K (y(2) should be substituted by K q(w)= “

aa)= f_lau’K( w)du .

K(uw), where

At the boundary point, the order of asymptotic bias for the twicing estimator based on the

Nadaraya-Watson smoothing is of order A% and asymptotic bias for the twicing estimator

based on the local linear smoothing is of order oA justification for the good boundary bias

of the local linear smoothing is provided by Jones (1993) where generalized jackknifing method
is considered to reduce bias order of kernel-type estimators near the boundary.
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