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Bootstrap Confidence Interval of Treatment Effect
| for Censored Datal)

Hyun-Jong KIM2 and Sang-Gue PARK3

Abstract

Consider the confidence interval estimators of treatment effect when some of data
to be analyzed are randomly censored, assuming two-sample location-shift model.
Recently proposed PARK and PARK(1995) Estimators is discussed and a bootstrap
estimator is proposed. This estimator is compared with other well-known estimators
through the simulation studies and recommendations about the use are made.

1. Introduction

We often consider the problem of estimating the treatment effect between two treatments
when some of the data, collected from the well-controlled experiment, are randomly censored.
A measure of frequent practical interest is the difference between appropriate quantiles(e.g.,
median) of two survival distributions. This paper deals with the interval estimation of such a
measure, without making any parametric model assumptions for two survival distributions.

For the first sample, we assume that life times X, X,,...,X, and censoring times
C,,C,, ..., C, are independent and identically distributed with distribution functions F and
F¢, respectively. Random variables X and C are also assumed to be independent. For the
second sample, we assume that ¥;,Y, ..., Y, and Dy, D,,...,D, are defined in the same
manner like the first sample with distribution functions G and Gp, respectively. The second
sample is assumed to be independent of the first sample. We observe only ( T x;, d x;) and
(T 0y (=12..,m; j=12,...n) where 8y = KX;<C) and 8y = KY;<D)). In this case
the distribution function of Ty, Hy, satisfies

1-Hx(d = (1-F())X1—F(9).
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The distribution function of Ty, Hy, defined similarly;
1-HW®) = (1—-G(H)X1—Gp(1)).

Letting 8y and @y medians of the two treatment distributions, the measure of interest is

A = 0)( - 6)’.

When some of the data are censored, two-sample nonparametric tests have lots of
literatures since the works of GEHAN(1965) and MANTEL(1966)(See FLEMING and
HARRINGTON(1991) in details). But estimation problem has very little attention comparing
with testing problem. CHAKRABORTI and DESU(1986) proposed a confidence intervals for
the difference in two population medians and WANG and HETTMANSPERGER(1990)

discussed 3 ways to obtain it. These methods are based on asymptotic theory. KIM(1993)
proposed bootstrap confidence interval for it. Recently PARK and PARK(1995) proposed a
quantile estimator for A, which can be easily converted a confidence interval estimator by
using normal approximation.

In this papér, we discuss the current available procedures of confidence interval for A and
propose the bootstrap estimator of PARK and PARK statistic. We illustrate them by an
example and then examine the coverage probabilities and average lengths of them by Monte
Carlo study.

2. Confidence Intervals based on Bootstrap

The KAPLAN-MEIR(1958) estimator(KME) of F is defined as

— 1 _ m—1 3wy
Fm(t) - 1 l.:J(-xIaSt( m_i_*_l ) 2
where T (x)<T (x)<...<T(xy and & (x),&(x),.-..0(x.) are the 4's corresponding to

T x» T (xy» - - -» T (x.), Tespectively. The KME of G can be defined similarly. It should be

noted that (i) if censored and uncensored observations are tied, we take the convention that
the censored observations occur just after the uncensored observations; (ii) if the last

observation is censored, F,.(#) never reduces to 1 and may not be a distribution function.
The median survival time for the first sample is defined

Ox = FY(1/2) = inf{ t: F(H)=>1/2}

and the natural estimator of 8y is

_—

O0x = FRX1/2) = inf{ £: F,(>1/2).

The asymptotic variance of 9} 1s
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Var( 9}) = m“lf(ox)—sz.

Ox —
where Vy = (1—F(6x))2£ (l—F)dzl(?l—Fc) and f is the density of F. 8y and @y

are considered similarly.

By = G;Y(1/2) = inf{ £:G.(H 21/2).
The asymptotic variance of 5} is

Var( ﬁ\y) = n'lg(dy)‘sz.

By
where Vy = (l—G((9y))2‘£ (l—G;;((;I—GD) and g is the density of G.

) The confidence interval of the parameter A cannot be estimated directly since the
variances of fyand 8y are functions of unknown densities.

KIM(1993) proposed the bootstrap interval of A, based on the difference in any quantiles.
The following theorem gives a theoretic basis for R* = (G Yp)-Fu W(p)) -
(G:N$)—F,N#)) to estimate the distribution of R = (G {O—F,'(®) -
(G Yp)— F (p)), where Gy and F,, are bootstrap versions of KME's for G, and F,,.

Kim showed that this estimator was easy to apply and did not need the assumption of shift
model, which was an attractive feature in small to moderate sized sample case.

Theorem 1. (Kim(1993)) Let 0<p<l. As m and n tend to infinity,
Q = Va (G l(®) -G ) ~Vm (F ' (0)— F.' ()
and

G= Vu(G,'\(®—-G ) ~-Vm (FH (D —F(#)

have the same limiting distribution on [0, Al

From the theorem 1 we knew that as m and n tend to infinity the bootstrap confidence
intervals for Q' have the valid limiting distribution. Now we can construct the bootstrap
confidence interval for A by the following manners;

Step 1. Take a set of bootstrap samples, ( T%, &%), - , ( T'x., %) (T7y, &) ..,
(T'y, &"%). From the set of bootstrap samples, we obtain F *(1/2) and G, 1(1/2),
respectively.

Step 2. Repeat “Step 1” B times, obtaining B pairs of bootstrap medians ( F,(1/2) o
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Gy M1/, (FL(/2) P, 67U 1/2)D), .., (Fu(1/2)®, G7(1/2) P,
Step 3. Construct a bootstrap confidence intervall A5, A uvm) for the difference of
medians G, '(1/2)- F,,'(1/2) using the bootstrap distribution of (G 1(1/2) — Fo Y (1/2) -
G, '(1/2)—F,,'(1/2) | and the simple percentile method.

Recently PARK and PARK(1995) proposed an estimator of the treatment effect A. The
treatment effect A can be rewritten as A = B! ‘l;ﬂ(G_l(y)—F_l(y))dy, where (<g<1.

Let Sr and S denote the upper supports of (1- F)(1- F¢) and (1- G)(1- Gp), respectively
and B, = F.(T (x,y) and B, = G,(T(y,y). PARK and PARK proposed an estimator of A,

—~

8
R = 87 [(G )~ Fa\(")dy, where B=min { Fu(Se), Gu(So), Bu Br). We adopt
their theorem 2 for the asymptotic normality of 2.

Theorem 2‘. (Park and Park(1995)) Under the regularity conditions for f and g,
(m+n)3( R - A)

is asymptotically normal with mean zero and variance A 2(6%/A; + d3/A;) as min(mn) —

oo, where

B F U@y rFUB) _ 2 dF(?)
= [ e QP e ry

and

_ [(Cey e ) - dG(D)
= [ (Jo 0 Ca) ey

The usual estimators for ¢¢ and o% can be obtained by replacing the Kaplan—Meier
estimators for F and G. Now we can make a confidence interval for A is
[ B, 2Byl

~ —~

where ZLI = /A\ - Zaf/Z B_l(m + 7%) and /&M: /A\ + Zar/Z ﬂ_l(v% + 70'721-)

When =1, PARK and PARK estimator can be viewed as just mean difference between
two groups with finite mean assumption for F and G. When A<1, so does as truncated
mean difference.

We can construct the bootstrap version of PARK and PARK estimator for A as
following;

Step 1*. Take a set of bootstrap samples, ( T, &%), .. , ( Tx., &%) (T, &%), ..,
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(T'y, 6&%,). From the set of bootstrap samples, we calculate B°( 5 of the bootstrapped

sample) and

= F L‘r( G (- Fu () ay.
Step 2*. Repeat “Step 1” B times, obtaining B bootstrap estimators for A( A (1)', A (2)',
o By
Step 3*. Construct a bootstrap confidence interval( N LB a use) by using the bootstrap
distribution of | 3"~ A |.

This estimator is also expected to work good in small to moderate sized sample case and
relatively easy to apply since we avoid calculating the complex variance.

3. Iltustrated examples

The following data reported in EMBURY et al.(1977) gives the length of remission (in
weeks) for two groups of patients. The objective of the experiment was to see if the
maintenance chemotherapy prolonged the length of remission; the first group is control group
and the second group received maintenance chemotherapy.

Control group: 5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45
Maintained Group: 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+,
where "+" indicates a censored observation. The result of log rank test (p-value= 0.033)
shows there exist some differences between two treatments.
The sample medians(used interpolation) for two samples are 22.000, 29.476. We use the

TABLE I in order to obtain PARK and PARK estimator. Since PARK and PARK had a
minor miscalculation, we include this table.

From this table, we can easily get 5 = 0.8159 and obtain N %—%&% ~ 10.3061, and

?1 and 8‘; can be estimated by substituting F, Hyx and G, Hy with sample estimates as
Park and Park did. Now we can have Var( BA);

~ _ 1 200.7541 295.5192 | ..
Var(B) = st { : + ARl } ~ 559273,

Thus PARK and PARK interval with 95% confidence coefficient

[ A, Byl = [-4352, 24.964],
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and bootstrap intervals, setting resample B=400, can be obtained by

[ B, 2B ygl = [-10.0125, 38.2188)

and

[ Aim B gl = [-45032, 23.3049].

TABLE 1. Kaplan-Meir Quantiles

y F. () G.'(») Gy (9 —F, (v
(0.0000, 0.0909] 5 9 4
(0.0909, 0.1667] 5 13 8
(0.1667, 0.1818] 8 13 5
(0.1818, 0.2841] 8 18 10
(0.2841, 0.3333] 8 23 15
(0.3333, 0.3864] 12 23 11
(0.3864, 0.4167] 12 31 19
(0.4167, 0.50911 23 31 8
(0.5091, 0.5139] 23 34 11
(0.5139, 0.6111] 27 34 7
(06111, 0.6318] 30 34 4
(0.6318, 0.7083] 30 48 18
(0.7083, 0.8056] 33 48 15
(0.8056, 0.8159] 43 48 5

From the estimated confidence intervals we can see that the length of estimators based on
PARK and PARK’s method are much shorter than others. Especially bootstrap estimator of
PARK and PARK statistic is the shortest. This motivates us to do simulation study for more
general situations and we will examine the coverage "probabilities and lengths of estimators
discussed above in the next section.

4. Simulation study and Conclusion

A simulation study has been done to compare the performance of the 5 confidence interval
estimators for treatment effect discussed here. We use 4 different sample sizes (20, 30, 40, 50)
and 3 different life time distributions (translation exponential, double exponential, logistic) with
respect to translation exponential and uniform censoring distributions. We also set 3 different
censoring rate (10%, 30%, 50%). These censoring rates can be obtained by adjusting the

parameters z,s and @,;s of the preassumed distributions. Let f denote the lifetime distribution
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and g the censoring distribution. We also set the confidence level, 1- @ = 0.95. Estimates of

coverage probabilities and average lengths for A are obtained using 10,000 replications (for
bootstrap estimators with resample B=400). Let us denote PARK and PARK P-P, the
bootstrap estimator of KIM K(B), the bootstrap estimator of PARK and PARK P-P(B). We
include CHAKRABORTI and DESU estimator (C-D) and WANG and
HETTMANSPERGER(W-H) for the reference. These results are summarized in TABLE II
through IV.

We have examined 5 types of confidence intervals for treatment effect assuming the location
shift model and we observed the followings from the simulation study;

(i) When we consider the coverage probabilities of the intervals, we found that all the
methods are relatively well maintaining the nominal a level.

(ii) When we consider the lengths of intervals, P-P and P-P(B), estimators based on PARK
and PARK's method, like the illustrated example, are much shorter than others.

(iii) For the case of exponential distribution, P-P(B) gives the shortest intervals. For the case
of logistic distribution with uniform censoring, P-P(B) also gives the shortest intervals when
the censoring rates are 10%. But as the cesoring rates increase, P-P gives the shortest
intervals. For the case of double-exponential distribution with uniform censoring, P-P(B) gives
the shortest intervals when the censoring rates are 10% and 30%. But when the censoring
rate is 50%, P-P gives the shortest intervals.

Generally bootstrap estimators have been known as a computer based method of statistical
inference that can answer many real statistical questions without formulas. P-P estimator for
the treatment effect has many good statistical properties, but it is based on large sample
theory and complex variance calculation. P-P(B) estimator is an easily performed one with the
simple computer program. And the simulation study shows that P-P(B) estimator consistently
gives the shortest intervals with good coverage probabilities except some cases. These views
lead us to recommend this estimator for researchers who are interested in estimating the
treatment effect.
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Table 1I. Empirical coverage probability and average length
Translation exponential( 8;) lifetime distribution and

Translation exponential( r,) censoring distribution

Sampl i
g, 6, | Samvle | Censoring | W-H P-p K(B) P-P(B)
size rate
10% 0.970 0.954 0.957 0.968 0.953
1.4165 1.3230 0.8858 1.2194 0.8620
0.981 0975 0.964 0.970 0.950
2 0
30% 1.5297 1.5384 0.7922 1.0783 0.7496
509 0.945 0.940 0.943 0.953 0.953
° 1.6912 1.6722 0.7805 1.1035 0.7635
10% 0.969 0.966 0.964 0.967 0.958
? 11228 1.1304 0.7721 1.0235 0.7380
0978 0.968 0.959 0977 0.948
0,
30 30% 1.2835 1.2523 0.6947 0.9755 0.6703
S0 0.968 0.963 0.947 0.965 0.960
0 10 ? 1.5539 1.5431 0.7276 1.0054 0.6744
' 10% 0.965 0972 0.949 0.973 0.960
? 09725 1.0033 0.6928 0.8829 0.6715
0973 0.970 0.955 0.967 0.953
0,
40 30% 1.0733 1.0555 0.6483 0.8759 0.6255
505 0.981 0.970 0.949 0.962 0.953
? 1.3484 13185 -| 06764 0.9503 0.6519
L0% 0.966 0.954 0.955 0.969 0.958
? 0.8858 0.8202 0.6298 0.7966 0.6033
0.965 0.965 0.948 0.963 0.968
0,
0 30% 0.9141 0.8867 05989 | 08079 0.5763
50% 0.983 0972 0.955 0.969 0.955
° 1.1789 1.1357 0.6392 0.8977 0.6006

Ax:8) = exp "%, gx;c) = exp
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Bootstrap Confidence Interval 925

Logistic( 8,) lifetime distribution and uniform censoring distribution ( z;)

6, 6, Sz'i’;zle Cer;z(:e““g C-D W-H P-P K(B) P-P(B)
10% 0.967 0.961 0.953 0961 0.952
? 2.8913 26213 2.1924 2.6079 2.1621
0.970 0.954 0.951 0.954 0.952
O,
20 30% 3.3137 3.1093 22119 2.5695 2.2997
50% 0.944 0935 0.949 0.957 0.950
° 3.8923 3.4997 2.3695 25123 2.3899
10% 0.959 0.960 0.950 0.961 0.952
? 2.2756 20978 1.7655 2.2154 1.7479
0.965 0.959 0.955 0.960 0.959
0,
30 30% 2.4393 2.3999 1.9005 2.1909 1.8612
-y 0.966 0.965 0.949 0.953 0.951
0 10 ? 3.2481 32482 1.9491 2.1361 20592
' 10% 0.957 0.961 0.949 0.961 0.953
? 1.8991 1.9149 1.6319 1.7915 15431
0.965 0.964 0.952 0.974 0.948
0,
40 30% 2.1819 20199 1.5901 1.9069 1.6181
5096 0.969 0.964 0.952 0.960 0.951
° 27181 24991 17133 1.9515 17117
10% 0.960 0.954 0.953 0.960 0973
? 1.6999 1.6259 1.4001 1.6445 1.3917
0.963 0.953 0.951 0.959 0.952
0,
0 30% 1.8391 1.7699 1.4391 1.69%1 1.439%
50% 0.965 0.964 0.951 0.960 0.952
? 225426 | 2.1995 1.4912 1.7918 1.4921
Ax;8) = Bl glx; ) = L I (%)
[} [1 + e~(x—0.-)]z ’ ’ ta T; (2]
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Table IV. Empirical coverage probability and average length

Double exponential( 8,) lifetime distribution and uniform( z;) censoring distribution

Sample

Censoring

6, 6, e i C-D W-H P-P K(B) P-P(B)
10% 0.969 0.953 0.960 0.968 0951
? 1.9000 1.7149 1.5816 1.6017 1.4471
0.970 0.960 0.955 0.960 0.950
20 30%
° 2.2001 1.9401 1.5992 16117 15123
505 0.969 0.945 0.954 0.959 0.945
? 2.7152 2.3991 1.8142 15313 1.9107
10% 0.966 0.959 0.956 0.965 0.949
¢ 1.4127 1.3001 1.2934 1.3199 1.2121
0.967 0.957 0.955 0.961 0.951
0,
30 30% 1.5921 1.4597 1.3491 1.3123 1.2990
5096 0972 0.961 0.953 0.960 0.940
o 10 ? 22576 | 1.89916 1.4371 1.4937 1.4973
' 10% 0.955 0.957 0.959 0.955 0.954
° 1.1597 1.1259 1.1548 1.1315 1.1391
0.965 0.955 0.954 0.955 0.953
O,
40 30% 1.2955 1.2214 1.1651 11717 1.1591
509 0973 0.959 0.953 0.955 0.959
? 1.6913 1.5901 1.2339 1.2971 1.3113
10% 0.957 0.955 0.953 0.957 0.953
? 1.0200 0.9541 1.0005 0.9875 1.0211
0973 0.950 0.952 0.955 0.951
50 %
30% L1171 1.0513 1.0221 1.0257 1.0212
505 0.974 0.961 0.955 0.955 0.949
° 1.3997 1.3165 1.1099 1.16% 1.1412

R 89 = Fexp T, plmie) = L1 o0
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