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ABSTRACT

A discrete model reference control scheme for a vehicle four wheel steering system(4WS) is pro-
posed and evaluated for a class of discrete time nonlinear dynamics. The scheme employs a neural net-
work to identify the plant systems, where the neural network estimates the nonlinear dynamics of the
plant. The algorithm is proven to be globally stable, with tracking errors converging to the neigh-
borhood of zero. The merits of this scheme is that the global system stability is guaranteed. With the
resulting identification model which contains the neural networks, the parameters of the controller are
adjusted. The proposed scheme is applied to the vehicle active four wheel system and shows the vali-
dity and effectiveness through simulation. The three-degree-of freedom vehicle handling model is used
to investigate vehicle handling performances. In simulation of the J-turn maneuver, the yaw rate
overshoot reduction of a typical mid-size car is improved by 30% compared to a two wheel steering
system(2WS) case, resulting that the proposed scheme gives faster yaw rate response and smaller side

slip angle than the 2WS case.

1. Introduction

From the beginning of automotive history, the two
wheel stecring (2WS : Front Wheel Steering) system has
been accepted as a vehicle lateral motion control metho-
dology without causing any serious inconvenience.
However, demand for safe driving has increased with the
increase in vehicle speed. Modem chassis control sys-
tems focus on protecting the drver from possibly
dangerous dynamic reactions of the car that may be un-
intentionally caused by the driver's action.

Since large yaw rates and side slip angles oc-
curring in high speed severe steering maneuvers can-
not be controlled by front wheel steering only, the
four wheel steering(4WS) systems have been applied
to control this model. Several control schemes for the
4WS systems have been proposed in order to provide
the vehicle with good handling performance, but a
4WS control scheme which has robustness and dis-
turbance rejection has not yet been reported.

This paper proposes a discrete model reference
controller which has neural network system iden-
tifications. In the model control, the control process
needs ap-

the wvalid dynamics which can be

aT0}

proximated by the neural networks. Moreover the
neural networks estimate even the unknown dy-
namics so that the control parameters can be ad-
justed. The purpose of this paper is to develop a
stable model reference controller for the control of
nonlinear dynamic systems in discrete time. In ord-
er to avoid iterative training procedure in favor of
probably global system stability, the system iden-
tification is carried by the off-line training, and the
stable reference model control is managed with the
learned neural network.

2. Vehicle Dynamics Model

In order to develop a 4WS model for neural net-
work control, a nonlinear bicycle model having 3 de-
grees-of-freedom (lateral velocity, yaw rate, and roll
motion)was used. Although a 3 degree-of-freedom
model was originally proposed by Segel[17], the
model in this study has different descriptions of ext-
ernal forces and inertia terms. Many 4WS papers des-
cribed vehicle dynamics with just 2 degrees-of-free-
dom or simple 3 degrees-of-freedom without suspen-
sion compliance effect, but this model adds the roll
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motion with suspension compliance effect. Top and
Rear views of this system are shown in Fig. 1. The
side slip angle, B, is the angle between the vehicle's
center line and the velocity vector of the center of
gravity(c.g.). The command input is the steer angle
for the reference model.

Recently, improved learning algorithms have stimu-
lated
networks(ANN's) in many research areas. Artificial

considerable interest in artificial neural
neural networks are simplified models of anatomical,
physiological, behavioral, and cognitive aspects of an-
imal biological processes. Neural Networks have

shown a potential for speech, vision, motor and mo-
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Rear View
Fig. 1. Top and Rear Views of 3DOF Vehicle
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tor sensor control, and other attributes required by
machines to emulate humans. Form the view point of
control engineering, ANN's are attractive for several
reasons. They are able to model the nonlinear plants
and to manage large amount of sensory information,
allowing both the identification and control of non-
linear dynamics systems[1][2]. Recent research re-
ports that neural networks can express most classes
of continuousfunctions with bounded inpurs and out-
puts to abitrary precision[3][4]. Although the results
are promising, no proof exists that a specific network
can learn a given function, form an arbitray initial
condition.

Being universal approximators, neural networks
have wide applications in nonlinear dynamic sys-
tem identification[5][6] and in rgression of non-
linear time series data. Werbos [7] proposed a very
by
which general recurrent learning rules can be easily

useful approach, called ordered derivatives,
derived. Bhat and McAvoy [5], have successfully
applied multilayer feedforward networks to non-
linear chemical process identification using feed-
forward networks, in which the networks are pri-
marily used as universal approximators for non-
linear systems.

Narendra and Parthasarathy[2],[10] discussed the
use of neural networks for dynamic system iden-
tification and control. They proposed generalized
neural networks, which are various combiations of
linear dynamic systems with feed forward networks.
Werbos[9] proposed the back-propagation in which a
neural network is first trained to model the forward
dynamics of the plant. Then an untrained controller
network is placed in series with the network model
of the plant. Finally, the weights for the controller
are trained using back-propagation of the command
input to plant output responses, while holding the
plant model weights constant. The output errors are
back-propagated through the plant model to provide
credit assignment for the plant inputs. This strategy is
the basis for many current neuro controllers[11],[12].
Kim and Ro[13] have demonstrated that an on-line
learning control with error back-progagation can be
applied to the plant which might have unstructured
uncertainties.

Nagai and Ohki[14] proposed another control
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scheme which would control the front and rear
wheels by a combination of feedback and feed-
forward compensation such that the steering response
of vehicle side slip angle and yaw rate foliows a vir-
tual vehicle model. Yuhara and others[15] proposed
the structure of and a design method for an Adaptive
Rear Wheel Steering Control System(ARWSCS) that
maintains desirable vehicle response through com-
puter control regardless of changes in vehicle dy-
The Self-Tuning
Controller(STC), controls the rear wheels in such a
manner that the vehicle follows the prescribed ref-
erence model which presents the desired response to
driver's input. Kim and Ro[16] established the sliding
mode confrol scheme for 4WS system. Neither brak-

namics. system, based on a

ing nor steering system dynamics were considered in
this study. The dynamics of the 4WS system is des-
cribed as :

Yaw motion :
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The nomenclatures for the parameters are listed in
Appendix A. Fig. 2 shows the schematic of the 3
DOF vehicle that shows the roll motion axis. The
kinematic relations between the state variables are ex-
pressed as follows :
O=r

0=p, y=u(B+6), @

The tire forces and moments can be written in gen-
eral as :

Ve=fu (0 Y Fop )y ye=fala, %, Fr)  (52)

where o is side slip angle, Y is camber angle, F, is
the normal force applied, and subscripts f and r
represent front and rear wheels, respectively. But, for
simplicity, the following linear tire model is used in
this study :

V==Copap +Cyyy,
Ny==Nop +Ny v,

Yr =~ Cur O +nyr
Ne==Nuo, +N,%  (5b)

Li==Ljo;+Lyy, Lr=—Laor+L,%

which are the function of tire side slip angles and
camber angles

a ,
op=bh+ - (r+ptane}—FE o f+E ;y,—Ey N,
1
— 5Byt -5

1
Yr=lor=Dyyp + DNy + 5 1ymyay (6)

' _Roll Axs

[6)
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X

Fig. 2. Schematic of the 3DOF car.
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Notice in (6) the control inputs, the front wheel ste-
er angle, 8, and the rcar wheel steer angle, §,. Also,
in (6), o and o, are the components of the front
and rear accelerations due to yaw, side slip and roll.

They can be expressed as :

a, =u(B+r)+a -F+atane-p,

w =u (B+r)+b r+btang p ©)
The lateral acceleration equation at any arbitrary lo-

cation on body are given by

s =u (B )+ (a = )7

- {(a ~Xpr Ytang+(z,— 2z )}15 (8)

where the subscript pr denotes the point where ac-
celerometer is attached. y,, is the rear directional dis-
tance from the axle to the center of mass and z, is
the height from the ground.

The prescribed equations can be rewritten in matrix
form which is convenient for computer im-
plementation. The statc vector for lateral vehicle dy-
namics is defined as

x=[yBp @]’ ®

The system can be described in a form of a gen-
eral nonlinear system :

(10

Xp=fp (x,u.t)

where Y (OER" and 4, ()SR". A more common

form that is linear in input u(t) is

Xp=f(x,0)+By (x,0 Yu (1) (11

Note that some systems that are not linear u(f) in in-
put can still be put in the form of (11) by using an in-

vertible input transformation. The linearized system is
described as

Xp =Apxp + Byt (1) (12)

In this paper the equation(11), which is linear in in-
put, is used.

3. Reference Model

The desired vehicle handling performance is ex-
pressed in terms of a reference model, which gives
the desired responses to a command signal. Relevant
questions to be asked in developing a reference
model for handling performances are : What are
some criteria for evaluating vehicle handling per-
formance? What is the relationship between an ob-
jective estimation (Instrument measurement) and a
subjective estimation (Jury estimation by expert driv-
er)? Many works describe these issues with varied o-
pinions. But, most of these agree on several points.
A car which has shorter rise time for step steer can
generally be regarded as having a better handling
performance. Also, the shorter the settling time, the
better the directional stability of the car. Moreover,
the reference model should have zero slip angle at
relatively low speed to reduce any unnecessary vehi-
cle yaw motion. In order to realize a desired ref-
erence vehicle model based on these points, it has
been determined that the tire cornering stiffpess
should be increased while yaw inertia moment is de-
creased. Based on these observations, the reference
vehicle model is set up as

(13)

X =AmXm + B r

where x,, is the 4x1 state vector which has the same
dimension as x, P, is the 4x1 control vector, and A,
is the 4x 4 system matrix whose elements reflect the

observations earlier.
4. System Identification by Neural network

There might be two ways trainings ANN's involved in
the system identification and the control, on-line training
(Pattern Leaming) and off-line training(Batch Learning),
depending on whether they execute useful work or not
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while leaming is taking place[18]. It should be noted that
only batch learning exactly implements the gradient des-
cent method. Although pattern learning is practically ef-
fective, the validity of it has not been given in a strict
mathematical sense. Another issue in handling dynamics
system using neural networks is that one has to train the
neural network not only with the current data but also
with the past data. There are two different approaches to
establish the network algorithm depending on the input
to the network. One is to use a feedforward network and
take the past measurement outputs of the system as in-
puts to the network(Feedforward network). The other is
to use the estimated outputs from the neural networks as
the cumrent inputs to the network(Recurrent network).
The neural networks have been used as universal ap-
proximators, having a wide variety of applications in the
nonlinear dynamic system identification [20][21]{22] and
in regression of nonlinear time series data [9].

The most general state equation for the nonlinear
systems is

x(t)=f(x,u,t) (14)
where (& R", x()ER" and u(r)< R”. The com-
monly used special form of (14) is linear in the input
u(t) and f{x) is autonomous system . That is

x(£)=f(x)+Bu(t), BeR"*" (15)
Note that some systems that are not linear in the in-
put u(t) can still be put in the form of (15) by using
an

invertible input transformation. The nonlinear

plant f{x) can be represented as :

fx)y=x(t)-Bu () (16)
Here, it is possible to discretize this continuous
time system.

f (x (k))=x(k)=Bu (k) (16)

By the sampling theorem, the sampling rate should
be bigger than two times the highest frequency con-
tents of the system. An assumption that all states are
measurable, is required for processing. The first order

23

derivative term x(k) can be processed by the back-
ward difference in the implementation as ;

x{(k)—x(k-1)

x(k)= T

(18)
where T is the sampling period. In order to excite the
system property, the input should have enough in-
formation up to the level of the possible control input.
The vector-valued nonlinear function f{x(k)) can be re-
constructed by a multilayer feedforward network with
the current states x(k), the derivatives of x(k), and the
current input u(k) as ;

f e Gh)y=N (x (k)x (k) (k) 19)

where N is the nonlinear function calculated by the
neural network. A typical three-layer neural network
can be set up for the system identification, whose in-
put is the vector x, or X,, depending on the network
type which is the feedforward network or recurrent
network. The input vectors for the feedforward net-
work and for the recurrent network, respectively, are
as follows :

% =[x (k)Tx (k) u (k)T]7 20

%= [ROTX ()T a(k)T )T

Traditionally in system identification, the feed-
forward network is considered as a series-parallel
identification, but the recurrent algorithm is con-

k) Ngga, i(x(k»},
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Fig. 3. System identificaion by the feedforward learning
and the recurrent learning
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sidered as a parallel identification model[2]. Fig. 3.
shows system identification by feedforward learning
and recurrent learning. The state of each neuron unit
is given as the weighted sum of inputs from the pre-
vious layer and each neuron's bias. The state of each
neuron is transformed nonlinear by a nonlinear sig-
moid function F(x) to obtain the output except one of
the output layer, which is transformed linearly. Each
node in the hidden and output layers receives the vec-
tor v=[vy, v, -+, v,]" which is the output signal from
the nodes of the previous layer. w,=[wi, wa, =, wy]"
is the weight vector. The j* node in a layer, for j=1,
2,..,n, has the following quantitized equation :

@n

n
- —wl-y
s; —ZWjivl +b;=w] +bj
1
where b; is the bias of the /* neuron. The quantity

s; is processed by an activation function to give the
output o; of the j* neuron :

0;=F(s;) (22
The activation function can be chosen as any func-
that
ferentiable. One of the most popular activation func-

tion is monotonically increasing and dif-

tions is the tangent sigmoid function because it
behaves like many biological neurons. The tangent
sigmoid function is expressed as

F (s )ZL

e
T+e =

-1 (23)

The network training process allows experiential ac-
quisition of input/output mapping knowledge within
multi-layer networks. In order to obtain appropriate
weights, we use the back-propagation algorithm. We
define f(x(k)) as the actual output from the neural net-
work and f‘(x(k)) as the desired output. Then, the er-
ror function E, which must be minimized , is written
as follows :

E

=23 F ey 24)
1

In batch learning, the minimization is processed by
applying the gradient descent method to this function.
However the pattern learning has different error func-

34

tion as;

1 A
E==(f(x(k))~f(x(k)))? (25)
The pattern learning can be regarded as a special
form of batch learning in which the number of input
pattern is one. For updating the weighting matrix, the
derivative of the error function is represented as;
dE,

L Fe(ky)- df (x (k)
dor oy = )= e oL

Sg(w(k) f(x(k)CER™  (26)

The three different system identification methods
[16] for the forward calculation and the update rules
are as follows;

[1] Feed forward batch learning

Fw(k)=N [w,x (k)5 (k) u (k)]
aw=aY g (w k), f(x(k)))
1

@7
(28)

where the weighting matrix w does not depend on
time.
[2] Feed forward pattern learning

fx (k))=N[w.x (k),%(k)u (k)]
Aw=a-g(w(k), f(x(k)))

29
(30)

where the weighting matrix w does depend on time.
[31 Recurrent pattern learning

f(x (k)=N[(w (k))R(k),x(k),R(k=1),

X(k=1),(u (k)]

Aw=a-g (w(k), f(x(k)))

€2))
(32

where the weighting matrix w does depend on
both time and the estimated function.

5. A Discrete Controller Design based
upon NN System Id.

Model Reference Control(MRC) is a very efficient
and systematic scheme which can avoid specifying
the design objectives in terms of a performance index.
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The MRC controller makes the actual plant to follow
the response of the reference model which is spec-
ified by the designer. One of the MRC techniques is
a signal-synthesis MRC system in which the a-
daptation mechanism is arranged to approximate the
nonlinear plant so as to minimize the difference
between the reference model output and the plant out-
Narendra and Parthasarathy[20] discussed the
use of neural networks for dynamic system iden-

put.

tification and control. They proposed generalized
neural networks, which are various combinations of
linear dynamic systems with feed forward networks.

Once the nonlinear plant has been approximated to
the desired level through neural network off-line
learning, the control input can be generated such that
the system has a good performance. In this section
the model reference control based on the neural net-
work system identification has been applied to the
nonlinear plant. The most general state equation for a
nonlinear system is

xX(0)=fe (x uc 1)

where x(f)& R" and u (/)& R". The more commonly
used special form than (33) is linear in the input u(f)

(33)

x(1)=fo (x,0)+Beuc (1) (34)

Note that some systems that are not linear in the in-
put u, can still be put in the form of (34) by using an
invertible input transformation. By Hamadar's and
Growwalls Lemma, the discrete model of (34) can be

discretized as :
x(k+D)=f(x(k))+Bu (k) 35)

A second order difference equation is suggested
for the reference model following as :

X {k ~1)=AmXm (k) +Bur (k) (36)
The output error e(k) is defined as
e (k)=x (k)—xm (k) 37

and the control input is generated such that the error
converges to zero.

lime (k)=0 (38)
k —300

If the nonlinear function f{x(k)) is known exactly, u

35

(k) can be computed at stage k as :
u (k)=B" (= f (x (k))+Anx (k)+Bur (k)) (39)
The error dynamics of the system is

e(k+1)=x (k+1)=xn (k+1) (40)
= £ (x (k))+Bu (k)=AmXn (k )=Bur (k)
=Ame (k)

Since the reference model is asymptotically stable, it fol-

lows that :ime (k)=0 for arbitrary initial conditions.

However the nonlinéar function f(x(k)) is unknown, the
neural network estimates this nonlinear function. The con-
trol input to the plant at any instant k is computed using
N (x (k), x (k-1)) in place of f(x(k)) as :

u(k)=B1(=N(x(k)x(k=-1))

+Amx (K )+Bur (k) 41)

The error dynamics in the difference equation is

e(k+1)=Ane (K)+f(x(k)-N(x(k),x(k-1))
=Ame (k )'H:(X ) 42)

where the estimation error by the neural network is
S(x)=f(x(k))=-N(x(k))x(x(k-1))

Theorem 1. If the neural network N (x (k), x(k-1))
estimates the nonlinear function f(x (k)) in a bounded
error, and all the solution of the asymptotically stable

43)

difference equation

e (k+1)=Ane (k) (44)

tends to zero as k approachs infinity, then all solu-
tions of the error system

e(k+1)=Ane (k)+f (x(k))-N(x(k)x(k-1))
=Am(f(k)+€(x ), e(k Ye R”,AmER"X" (45)
is bounded and stable.

Proof) Since the error &(k) is bounded, there exist a
positive constant ¢; such that

lim sup || (k) || = (46)
The solution of (45) is given by
k
e (k)=Ak e (0)+Y AT E(k-1) 7
j=1

Thus , for some & and for large &
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ey TI<I]An [1* [1e(0) ]+

k
(c1+8) Y |1 Am f|* (48)
j=1

A [E e (O [[+(cr+e) Y, 1 Am |+
j=1

where € is bounded constant.

Since the origin of the homogeneous system given
by (44) is asymptotically stable, there exist positive
constant B such that

O0<||An ||=B<1
So,

k k
lim(c,+¢€ An ||/ =lim(c,+¢ k=i
lim (e, ),Z:l” ||+~ =lim (e, >sz1[3

=(er+e) 1og (49)
Therefore
e G <pt e @ +(erre) g (O
<lle (O]l +(ei+e) 715

is bounded, and the system is stable. QED

x(k+1}

x(k)

Fig. 4. The discrete model reference control with the
neural network system identification

Fig. 4 shows the overview of the discrete model
reference control with the neural network system
identification. The adaptive capability of the neural
network adjusted the parameters of the control.

6. Evaluation of Vehicle Four Wheel Ste-
ering Control with NN system Id.

In order to demonstrate the validity of the pro-
posed control scheme, it is applied to the active four
wheel steering system vehicle. The operating con-
ditions of the vehicle is always changing due to the

36

load, tire condition, and the vehicle driving en-
vironment. Thus, it is necessary to apply nonlinear
control for the stabilization of the vehicle handling
dynamics. For the dynamics of the model, three de-
gree-of-freedom is derived and represented in state
space form in [23]. The three degrees-of-freedom
vehicle handling model includes yaw, lateral trans-
lation, and roll. To investigate the system iden-
tification by the neural network, the MIMO nonlinear
vehicle handling model was used. In the learning pro-
cess, the system was excited by the front and rear ste-
ering inputs. The amplitude and frequency of the
front wheel angle was uniformly distributed in the in-
terval [-30,30] deg., and [0,20m] rad., respectively.
The rear wheel steer angle has the same frequency in-
terval as the front, but a smaller amplitude interval [-
10,10] deg. The neural network has two hidden lay-
ers, which have a tangent sigmoid function layer and
a linear function layer. The number of input to the
neural network is 10 and the number of output is 4.
The weights in the neural network were adjusted by
the
method was employed in a learning rate of n=0.15.

back propagation, and the gradient descent
In the batch learning process, 741 input patterns for 4
seconds were used for teaching and executed up to
237861 epochs. Fig.5 shows the learning error of the
batch learning process. The pattern learning process
is considered as a batch learning in which the numb-
er of pattern is only one at each time step. To check
the convergence, a sum of errors for every 741 itera-
tion(1 swap) was shown in Fig. 5. Both learning
processes can identify the nonlinear vehicle dynamic
system in a bounded error. Since the recurrent pattern
learning process has almost the same trend as the

Batch loaming

380

Fig. 5. Summed square errors of the pattern learning and
the batch learning
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feed forward pattern learning processes, only the
learning process of the feed forward pattern is shown
in Fig. 5. The three learning process converged to
0.001 of the summed square errors, resulting in a
good approximation of the nonlinear function. Fig. 6
shows the error norm of the system identification dur-
ing 4 seconds control period which demonstrates the
approximation of the neural network for the non-
linear function. The norm is defined as :

e () [1=11f(x)=N(x.xt) ||, e, (1)eR"(51)

In Fig. 6 the dashed line indicate the upper bound of
the error norm.

Fig. 7, Fig. 8 and Fig. 9 show the step responses
of a conventional two wheel steering(2WS) vehicle
and a four wheel steering(4WS) vehicle with the pro-
posed control scheme. If the yaw velocity steady
state gains for both systems are not the same, the ste-
ering gear ratios are adjusted to equalize the steady
state gains. Since the lateral acceleration rises up to

upper bound of +ror norm

2| e
0.18F R
0.1 -’
oo W—AWM]\/\M
a o.& Al AR 2.5 2 ER ] -

Fig. 8 The error norm of the system identification during
a four second control period
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0.6G in this maneuver, the tire has nonlinear charac-
teristics. The side slip angle of the 4WS vehicle is ef-
fectively reduced by the proposed control scheme.
This reduced slip angle reduced the overshoot of the
yaw rate so that the vehicle has just enough yaw rate
necessary to make a turn. Since the 4WS has shorter
rise time than that of 2WS in the yaw rate, the 4WS
has improved vehicle handling response.

7. Conclusion

In this paper a three layer neural network has been
shown to estimate nonlinear vehicle dynamics, which
may be of either known or unknown structure. Three
types of learning processes were designed. Each lean-
ing process is capable of uniformly approximating a
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class of discrete time nonlinear vehicle dynamics with
bounded error. Replacing the nonlinear function of the
system with this neural network, a MIMO model ref-
erence control has been developed. A unique feature
of this control law is that it is not necessary to model
the unknown nonlinear function in the control process.
Moreover, the parameters of the controller are ad-
justed by the adaptive neural network which is trained
by off-line learning.

The proposed scheme was applied to the vehicle
active four wheel system and showed the validity and
effectiveness of the simulation. The simulation of the
J-turn maneuver shows that the proposed scheme
gives faster yaw rate response and smaller side slip
angle than the conventional 2WS case.
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Appendix A. Nomenclature for Handling

Parameters
C,s : Front tire cornering stiffness per tire (positive)
C.r : Rear tire cornering stiffness per tire (positive)
Cy; : Front tire camber stiffness per tire (positive)
Cy : Rear tire camber stiffness per tire (positive)

d; : Front roll damping coefficient d, : Rear roll
damping coefficient

Ey; : Front aligning torque deflection steer per wheel
(positive understeer)

Ey. : Rear aligning torque deflection steer per wheel
(positive understeer)

Eq4; : Front roll steer coefficient (positive understeer)
E; @ Rear roll steer coefficient (positive understeer)
E, : Front lateral force deflection steer per wheel
(positive understeer)

E,, : Rear lateral force deflection steer per wheel
(positive understeer)

hs : Front roll center height
height

h, : Total mass c.g. height

C.;:Rear roll center

C,:Front unsprung
mass c.g. height

h. : Rear unsprung mass c.g. height C,:Sprung
mass roll inertia

I.. : Sprung mass yaw inertia C,;Unsprung mass
yaw inertia

I, : Sprung mass product inertia C,; : Front roll
stiffness

L : Wheel base

Ly : Front overturning moment/slip angle per tire

K, : Rear roll stiffness

(positive)
L, : Rear overturning moment/slip angle per tire
(positive)
L, : Front overturning moment/camber angle per tire
(positive)
L, : Rear overturning moment/camber angle per tire
(positive)
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my: Mass on front wheels m,:Mass on rear

wheels

m : Sprung mass m,:Total mass

N, : Front tire aligning torque/slip angle per tire
(positive)
N, : Rear tire aligning torque/slip angle per tire

(positive)
Ny @ Front tire aligning torque/camber angle per tire

(positive)

Ny @ Rear tire aligning torque/camber angle per tire
(positive)

p : Roll velocity r : yaw velocity

y : Lateral displacement b : Side slip angle

f : Roll angle q : Yaw angle

Ty : Front aligning torque deflection camber per
wheel(positive understeer)

[y : Rear aligning torque deflection camber per

wheel(positive understeer)

Ty : Front roll camber coefficient (positive un-
dersteer)

Isr : Rear roll camber coefficient (positive understeer)
Ty, : Front lateral force deflection camber per wheel
(positive understeer)

TI',, : Rear lateral force deflection camber per wheel
(positive understeer)

u : Vehicle velocity
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