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Abstract

In a traditional sequential acceptance sampling plan, it is assumed that the
sampled items are independent each other. In this paper, stochastically dependent
sequential acceptance sampling plans are dealt when there exists dependency
between sampled items. Monte-Calro algorithm is used to find the acceptance and
rejection probabilities of a lot. The number of defectives for the test to be
accepted and rejected in probability ratio sequential test can be found by using
these probabilities. The formula for measures of performance of these sampling
plans is developed. Type I and Il error probabilities are estimated by simulation.
This research can be applied to sequential sampling procedures in place of control
charts where there is a recognized and necessary dependency during the
production processes. Also, dependent multiple acceptance sampling plans can be
derived by extending this sequential sampling procedure. As a numerical example,
a Markov dependent process model is given, and the characteristics of the
sampling plans are examined according to the change of the dependency factor.

1. Introduction

Sequential sampling plans are of special interest when the formation of
inspection for lot-by-lot acceptance may be impracticable or artificial as in
conveyor-line production, or when there is an important need for rectifying the
quality of a product as it is manufactured. This is especially true where
observations or outcomes, such as runs, naturally occur in succession rather than
in parallel. The assumption of the independence between the observations has been
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used and the probability is one that the sequential process will eventually
terminate. Practically, however, it might be difficult to attain a state of statistical
control with this strict sense; dependency or correlation between items and other
systematic time related effects are sometimes substantial. Until recently the
general methodology of the correlated sequential sampling plans has not been
studied much because of the varieties of the dependent process model and the
difficulties of finding the necessary probabilities.

There have been several studies about the dependent sampling plans. Bhat, Lal
and Karunaratne(1990) approached the single acceptance sampling problem with an
augmented Markov chain matrix. These analytical studies are limited to special
cases only, mainly Markov processes, due to the mathematical complexities of the
probability structure. Moreover, most efforts have been concentrated on single
sampling plans. Even for such a single sampling plan, the analysis is extremely
complicated. Nelson(1993) has developed a method for estimating single acceptance
sampling plans for general production process models that can be simulated.

Let us examine an example of a dependent production process. Suppose there is
a process where a product is going to be produced on a machine. Consider a
production process having a lot of size N. We assume that the production has the

stochastic output process {X;, X5 -, Xy}. If the state of the process producing
the ith item is good, then X;=0, and if the process is bad, then X;=1. The

inspector tests each item sequentially until a decision is made according to the
constructed sampling plan. Assume the probability of producing a defective part
varies according to the previous item, i.e. the process is specified completely by
the following Markov transition probability matrix[Bhat and Lal, 1988, Bhat et al.
1990] :

With the admissible range 1—min{1/p;,1/(1—p)}<po <1, the matrix is

1—29.(1—p0) p:(1—0)
P= ,
where p;, i=1, 2 are Acceptable Quality Level(AQL) and Lot Tolerance Percent
Defectives(I.TPD) respectively. The dependency factor @ is lag 1 serial correlation

of the process. If ©=0, successive items are independent. As © increases to 1 a

succeeding item is more likely to be the same as the previous item, and as p
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decreases to -1 a succeeding item is more likely to be different from the previous
item. Such a process can be quite common in manufacturing. Broadbent(1958)
proposed a work estimating the lag 1 senal correlation p. The process normally
produces good items, but if a defect is caused, the same cause produces a run of
bad items.

Now suppose a new tool is used at the beginning of production. We want to
produce a lot of 400 items and sampled items are examined successively. Assume
the AQL is 0.01 with the acceptable tool wear with type I error probability @ of
0.1. A more rapid tool wear makes the product quality level poorer. Also assume
the prespecified LTPD is 0.1 with type II error probability B8 of 0.1. In this case,
traditional sequential sampling plans can not be used because of the lack of
independence, ie., varying defective ratios. The purpose of this paper is the
development of the methodology of dependent sequential sampling plans in this
situation.

2. Dependency and Estimation of a Rejection Probability
of a Lot

To design sampling plans we need the following three probabilities at two
quality levels AQL and LTPD. Let us define the following variables. For i=1, 2,
-+, N and j=1, 2, -, i,

C,= 22=1X » - cumulative number of defective items discovered through item
I
f;=Pr(C,=j) @ probability that there are exactly j defectives among the
inspected [ items,
7;= Pr(C,2j) : rejection probability of a lot such that there are ; or more
defectives among [ items,

D, : order of the inspected item on which the jth defective item is found, and

vy;= Pr(D;=1) : probability that the jth defective item occurs at the ith item.

Since the two events { C,=;) and { D;<i} are equivalent, the relationship
between three probabilitie f;, 7;, and wv; can be found. Note that 7,,=1 and

71',,'-;-1:0. For all i=1, 2, ---, N and j=1, 2, -, |,
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y;=Pr(C=j)=Pr(D;<i)= 2} Pr(D,= k)
=2\ Pr(D;=k + 20}, Pr(D;= k)
=204 PrD; =B =204 vi.

Thus, we know that v;=y;— 7=y, and f; =7¥i— Yij+1-

To find the rejection probability 7, the concept of Monte-Carlo integration can

be applied[Ripley, 1987]. Suppose we wish to evaluate the parameter & such that
6=E[0(X)]= [ &(x)f(dx,

where f(x) is a probability density function of a continuous random variable X.
To estimate 4, sample X,, X5, ---, X,, independently from the distribution having
f(x) and form &= 2,7 ,0(x)/m, where m is the number of independent

replication number in simulation. If we want to find 6=Pr(X=c¢), the obvious

way to estimate 8 is
6= [ _IX>f(Ddx,

where I{(X=c) is 1 if X=c¢ and 0 otherwise. We get the estimator of @ by
substituting @(X) to I(X=c¢) :

=27 0x)/m=2" (X, =c)/m.

When X is a discrete random variable, only the integral is changed to
summation and the estimation procedure is the same as the continuous case. In
our simulation, we want to estimate y;= Pr(C,>j). By applying Monte-Carlo
integration to the discrete case, we get
7= 27 I(Ct=j)/m, where Cf is the kth replication of C;.

Note that 7/',\, forms a lower triangular array since i=1, 2, -, N and range of

C; is from 0 to i. To form the array [7/',\; 1, m independent replications are
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required for each i=1, 2, -, N and j=1, 2, -, i. So Maximum mN(N+1)/2
computations are required for making a whole rejection probability array [ )/'; 1.

We need a procedure to form the array more efficiently.

Let S;= ZZLII ( sz /). Then S; represents the total number of simulation
replications that j or more defective items are found among i items. The estimator
7; is obtained from 7;=S,/ m=§;. But instead of storing the real number
array [ S;], storing the integer valued array [ S;] is preferred, which reduces the

numerical truncation error and enables fast accessing. The following algorithm

shows a pseudo code for the generation of a rejection probability array [ S;].

Algorithm : Generation of [ S;;] by Monte-Carlo integration :

0. Initialize S,=0 for i=1, 2, -, N and j=1, 2, -, i.

1 Repeat for £k = 1 to m.

2. Set ¢=0.

3. Repeat for i=1 to N.

4 Generate process value X,; for a specified dependent process
model.

5. If the ith item is rejected(i.e., X,;=1) then increase ¢ by 1.

6. Repeat for j=1 to i.

7. If ¢ >j then increase S; by 1.

8. Next j

9. Next 1

10.  Next k

In the above algorithm, ¢ represents the number of defective items found by the
inspection procedure. The step numbers 6 through 8 are just an adaptation of the
Monte-Carlo integration procedure for estimating. But we can make a more
efficient algorithm by replacing the step number 6 through 8 as follows :

Repeat for j=1 to c.
Increase S, by 1.

Next j

This modification is very simple, but reduces the computations required by step
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6 remarkably. Most practical lots have a small fraction of defectives, e.g., 19, 2%,

- usually below 20%. The number of defective items ¢ among a sample of size I
is far less than the sample size { when { is large, i.e., ¢<<i and there is no need
of IF comparisons. The smaller the fraction of defective, the more loop reduction

is achieved. Generation of [ S;] requires a great deal of simulation time. Therefore
3
it is important to make [ S;] efficiently. We can also apply the variance reduction

techniques to reduce the replication number. See Nelson(1987) and Wilson(1984)
for other general variance reduction techniques.

3. Determination of Acceptance and Rejection Boundaries

The implementation of SPRT(Sequential Probability Ratio Test) starts from
finding the acceptance and rejection numbers at each sample point. For i=1, 2, -,
N, define the probability ratio,

(xy, o x)=p(xy,, 2/ po(x1, -, X)),

where p(x;,-:*, x;) is the joint probability density of the first i items when the
fraction of defectives is LTPD, and py(x;,**-,x;) is the joint probability density of
the first { items when the fraction of defectives is AQIL. The probability ratio test
is rejected if I(x,, -, x;) = (1 — B)/aand accepted if {(xy,, %)< B/(1—a). Wald
(1947) proved that the above fundamental inequalities remain valid for a test

procedure in spite of the dependency of the successive observations, provided that
the probability is one, e.g., the procedure will eventually terminate.

In general, it is difficult to find the joint probability densities py(x;, *-,x;) and
p1(xy, -, x;) analytically if dependency exists between the processes. However, by

using simulation we can find the dependent joint probability densities as in the
previous section. Let us define

,-L,-TPD : the joint probability that there are exactly j defectives among the i items
when the fraction of defectives is LTPD,

fj-?QL . the joint probability that there are exactly j defectives among the i items
when the fraction of defectives is AQL,

¥; . the number of defectives for the test to be rejected at the sample number

I, and
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a; ' the number of defectives for the test to be accepted at the sample number 1.

The rejection number #; and acceptance number a; at the ith sample point

can be found from the following equations. For i=1, 2, =, N, we get

7; = minimum ; satisfying ff]‘-TPD / ff-}QL > (1—-8/a,

a; = maximum J satisfying ff;TPD / ff}QL < B/ (1—a).

The minimum J value in determining #; and the maximum j value in determining
a; give the narrowest boundary width which reduces the difference minimally

between the actual and estimated parameters ¢ and f. The paths of 7; and a,

are decision boundaries of test procedures and generally form step function shapes.
The inspection size can be quite large in SPRT theoretically, although the
probability is very low. We will only consider up to the curtailed inspection point
which is the lot size N for practical use. The probability that the test exceeds
over this point is almost zero. Once the acceptance and rejection numbers are
found, we can compute the acceptance and rejection probabilities at each sample
point. These probabilities are necessary for computing the measures of
performance. Let us define the following events :

A;={The SPRT is accepted at the ith sample point},
R;={The SPRT is rejected at the ith sample point},
E;={The SPRT is finished, ie. either accepted or rejected at the ith sample

point}.
Then we have

PrlE]=Pr{A,UR]= Pr[A]+Pr[R,].

The probability of acceptance Pr[A,] and the probability of rejection Pr[R,] at

the ith sample point can be found by simulation or analytical methods.

4, Measures of Performance

We will consider three measures of performance : Average Sample Number(ASN),
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Average Total Inspection(ATI), and Average Qutgoing Quality(AOQ). As we have
known the acceptance and rejection probabilities at each sample point, ASN can be
computed as follows.

ASN = Zf\;lipf{Ei] =2 i{Pr[A]+Pr[R]}.

Since SPRT is an open sequential test, ie., the sample size can be infinite in
theory, we might expect the distribution of the sample size to skew. Some
asymptotic properties of the sample size distribution were obtained by Wald. The
ASN has been the point of interest in sequential sampling plans by many
researchers[Johnson, 1961]. Corneliussen and Ladd(1970) developed a recursive
method for exact calculation of the sample size distribution and ASN. They found
that Wald’s formula for the ASN is beneath the true ASN at maximum by about
20%. Thus, the saving in observations resulting from use of an SPRT is very
much an average property, and in particular cases, an SPRT may require many
more observations than a nonsequential plan having the same probabilities of
error. The work of Baker(1950), Page(1954), and Kemp(1958) regarding the ASN
all indicates that the approximation of Wald’s ASN formula can sometimes
substantially underestimate the true ASN, especially if the starting point of the
SPRT is close to one of the boundaries. Wald and Wolfowitz(1948) proved that
SPRT produces the lowest possible ASN.

If the SPRT is accepted, then the total inspection is simply i. If the SPRT is
rejected, then the whole lot will be inspected, hence the total inspection is the lot
size N. Therefore, the ATI is

ATI - ﬁl iPrlA,]+ glNPr[R,-].

1=

In the above formula, we have used the assumption that the SPRT is finished at
the curtailed inspection point. If the test is not finished at this point, then
truncation occurs to prevent an excessive test size, and the lot is assumed to be
accepted.

To find the AOQ we need to know the average number of defective items
remaining in a lot and the average number of items actually shipped after

inspection. We can obtain the expectation of C, as follows :

E[C1=270Pr[CoA=2 2 Pr[C,2/1=2"17,.
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Let [ND]f represent the number of defective items among the item number i

through Jj, where j > i. The expected value of can be found as follows :

E{[Npli} =E{[Np)i}—E{[Np]i"}

=E[C1-ElC 1= =17~ 25\ Ytimvk -

Let Np be the total number of defective items remaining in a lot of size N after
inspection. Also let Np|R; and NplA; be the number of defective items
remaining in a lot of size N under the event R; and A; for i=1, -, N. Then

the expected value of Np is

E[Npl=2 Y E[Ny IRIPr[R1+ 2L E[Ny|A]Pr[A]].

The first two terms of the right hand side become 0 since there are no defective
items in a rejected lot. Therefore, we have

E[Np}=21LE[NplA;]PrlA;],
where
E[ND V‘L‘] = E{[ND]f'\iq} = 2?:17’1\1}— Z;::N'iz-

Now let Njs represent the number of items actually shipped after inspection. If all
defective items found are replaced with good ones, then Ng¢=N. When the

defective items found are discarded and not replaced with good ones, E[Ng] is

calculated as follows.
If the procedure is rejected at sample number i, then the actual number of shipped

items is N-—7; because the 7, defective items are discarded, and the probability
of this event is Pr[R,]. Similarly, if the procedure is accepted at sample number
[, then the actual number of shipped items is N—a; because the a; defective
items are discarded, and the probability of this event is Pr[A;]. Therefore, we
get the AOQ from the definition AOQ= E[Npl/E[Ns], where E[Ng]= f;l
{(N=7)Pr[R]+(N—a)Pr[A]}.
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Type I error probability is @= Pag {l(x;, x5, ", xy) 2 A}, where A=(1—8)/a
and the index AQL means that the experiment is conducted under the condition
that the fraction of defectives is AQL. The obvious way of estimation is to
calculate the following estimator value under the condition that the fraction of
defectives is AQL. Applying the Monte-Carlo intergration, the estimator is

o= 2 ;en=11{l(x1 » X240 777 xN,,)ZA}/m,

where N, is a random variable called stopping time having values {1, 2, -, N}
in the kth independent experiment. The event { /(x;, x3, -, xy,) = A} is equivalent
to { Cy,27y,} for some N, at which the test is finished. Similarly, type Il error
probability is 8= Prypp{l(x, x5, -, xx)< B}, where B= 8/(1—a). Under the

condition that the observations are conducted with LTPD, the estimator of £ is
%= Z Z1=II{l(x1 ’ x21 Ty xN.)SB}/m'

The event {/(x;, x5, =, xy,)<B} is equivalent to Cy,<ay, for some N, at which

the test is finished.

5. Numerical Examples : Markov Dependent Process Model

We will examine the Markov dependent process model with the dependency

factor p varying from -08 to 0.8 with stepsize 0.2. Assume that the following
parameters are set.

N m AQL LTPD a
400 400000 0.01 0.1 0.1 0.1

<Table 1> shows the first sample point i for the test to be rejected when the
number of defectives is #;. For example, when p=-0.8, if 2 defective items are
found between the sample number 3 and 17, or 3 defective items are found
between the sample number 18 and 32, etc., then the test is rejected. Similarly,
<Table 2> shows the first sample point { for the test to be accepted when the
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number of defectives is @;. From <Table 1>, we see that the first sample point

becomes smaller as the absolute value of dependency factor p deviates from 0O
farther. This means that if there exists more negative or positive dependency
between the process data then the more defectives or samples are required for the
test to be rejected. However, <Table 2> shows this situation is different in case
that the test is accepted. The first sample point point becomes larger as the
dependency factor o approaches to +1. This means that for the test to be
accepted the fewer samples are required as o approaches to -1 at the fixed
number of defectives. In other words, the more defectives are required if the
process is more negatively dependent at the fixed sample point. On the contrary,
the fewer defectives are required if the process is more positively dependent at
the fixed sample point.

< Table 1 > The first sample point / for the test to be rejected when the number of
defectives is 7, and the dependency factor is p

, 1 Cos -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8
0 13 15 17 20 24 29 39 58 117
1 28 31 36 42 49 61 81 121 242
2 43 48 55 63 74 86 105 146 266
3 57 64 73 85 99 110 130 171 289
4 72 81 92 107 124 134 154 195 315
5 87 97 111 129 150 158 178 220 339
6 102 115 130 151 175 181 201 241 362
7 116 131 149 173 199 206 224 267 388
8 132 148 166 195 223 229 | 250 . 291
9 145 164 185 216 243 254 272 314 |
10 158 179 203 240 278 277 294 338
11 176 197 223 261 297 302 320 360
12 187 213 242 280 333 328 341 382
13 212 | 229 259 306 360 350 364
14 221 239 267 330 334 37 390
15 228 259 307 349 | 396
16 252 274 315 353
17 263 283 353 399
18 303 325 382 1
19 331 353 ‘

20 347 370
21 373
22 382
23 391
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< Table 2 > The first sampie point / for the test to be accepted when the number of
defectives is a; and the dependency factor is p

2 ? -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
1 1 1 1 1 1 1 1 1 1
2 3 3 3 2 2 3 2 5
3 18 20 22 25 28 18 10 7 7
4 33 37 41 47 53 41 27 15 8
5 48 53 60 69 78 65 48 25 12
6 63 70 79 91 104 89 72 45 18
7 77 86 98 113 128 113 96 66 26
8 92 102 116 135 153 136 119 86 38
9 107 119 135 157 179 160 142 110 52
10 122 136 154 179 204 184 165 134 76
11 134 153 174 199 227 206 187 154 83
12 151 167 190 220 254 231 211 182 118
13 163 186 208 241 280 257 236 202 133
14 178 200 230 262 312 279 259 226 156
15 195 215 248 284 332 302 282 248 182
16 212 229 260 310 355 321 306 272 199
17 230 269 312 317 347 329 295 233
18 263 288 353 346 376 354 319 247
15 292 325 382 388 399 374 342 271
20 ¢+ 331 353 395 362 289
21 347 370 387 315
22 373 339
23 382 364
24 391 388

The graph of the decision boundaries, i.e., acceptance and rejection lines when
020 and <0 are in <Figure 1> and <Figure 2> respectively. In <Figure 1>,
upper 3 lines are acceptance lines and lower 3 lines are rejection lines. Note that
they are not overlapped each other. The figure shows that the gap of the
boundary lines between acceptance and rejection lines becomes wider if p
approaches to 1. This means that if the process is more positively dependent then
the chance of continuation of the test at each sample point becomes higher. In
other words, it is more difficult to make decision early if the process is more
positively dependent. Note that the independent case( p=0) has the narrowest gap
among the other several cases. Consequently, the average sample size of the
dependent process necessarily becomes larger as o approaches to 1(See <Table
4> and <Figure 3> also). In case of negative dependency, however, the gap
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< Figure 1 > The boundary lines of acceptance and rejection numbers for the Markov
dependent model when =0, 0.6 and 0.8

400
350
300
250 |
200 ;

sample number

150 |
100 |
50 |

number of defectives

< Figure 2 > The boundary lines of acceptance and rejection numbers for the Markov
dependent model when =0, -0.6 and -0.8

between the decision boundary lines does not become wider but become narrower
as the sample number or defectives increases. <Figure 2> shows this. Among the
paired two lines having the same symbol mark, the upper line is the acceptance
line and the lower line is the rejection line. Due to the randomness of the
simulation the boundary lines are rather bent with more negative o values. From
<Figure 1> and <Figure 2>, we can see that there exists big difference of the
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acceptance and rejection boundaries between the positive and negative dependence
factor cases. If the dependency factor is positive, the quality of the product
resembles the former. Once the former item is bad, the probability of defective
item of the following item becomes higher. The variance of estimated rejection
probability increases, which makes the gap between the accept and reject lines
wider as the inspection procedure continues. In case of negative dependency, the
quality of the product has a tendency not resembling the former items. The
defective ratio of the product does not vary much, which makes the gap between
the accept and reject lines not wider compared to the positive case.

The estimated values of @ and A are shown in <Table 3>. The estimated type
I error probabilities are lower than @ but the type II error probabilities are almost
consistent to B. The inaccuracy of the estimated type 1 errors comes from the
Walds boundary equations. The measures of performance of the sequential
sampling plans are shown in <Table 4>. The graphs of ASN and ATI are shown
in <Figure 3>, and the graphs of AOQ without replacement are shown in <Figure
4>, The ASN at AQL is rather higher than at LTPD. The ASN increases as the
dependency factor © increases. When p is negative the ASN increases linearly
but when p is positive the ASN increases nonlinearly, ie., more rapidly.
Especially the increment of ASN is fairly high as p approaches to 1. In the case
of ATI, the increment tendency of ATI at AQL is similar to that of ASN. But the
ATI at LTPD remains almost same and has much higher values than at AQL. As
o increases, the AOQ which is represented as percent in <Table 4> decreases

linearly when p is negative, but decreases rather slowly when p is positive.
Unlikely in the case of ASN, the AOQ at AQL is not always higher than at
LTPD. There is not much difference of AOQ whether the defective items are
replaced with good ones or not.

< Table 3 > Estimated type | and Il error probabilities

0 a 8
-0.8 0.0561 0.0978
-0.6 0.0556 0.0946
-04 0.0536 0.0964
-0.2 0.052 0.0948

0 0.0429 0.0974

0.2 0.0534 0.1057
0.4 0.0611 0.1054
06 0.0618 0.1095
0.8 0.0632 0.1014
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< Table 4 > Measures of performance of the sequential sampling plan

at AQL at LTPD
AOQ(%) AOQ((%) ; AO0Q(%) AOQ(%)
0 ASN | ATI without with ASN ATI without with
replacement | replacement replacement | replacement
-0.8 154 37.3 1.6042 1.6032 105 362.4 1.4399 1.4339
-06 17.7 39.3 1.4213 1.4204 11.8 363.9 1.2505 1.2452
-0.4 20.2 41.1 1.2393 1.2384 13.5 363.4 1.1269 1.122
-0.2 239 44 1.056 1.0552 157 364.4 0.9577 0.9534
0 29 453 0.8875 0.8869 18.9 363.9 0.9067 0.9024
0.2 349 55.4 0.8625 0.8618 256 361.6 0.9648 0.9591
0.4 471 70.3 0.8257 0.8248 37.1 363.4 0.9219 0.9146
06 71.8 94.7 07653 | 0.7641 62 365 0.8855 0.8744
0.8 1439 | 166 0.5896 0.588 1243 374 0.6663 0.6497
- 400 . ;
‘ N ‘
X% 350 ;
e asN at agr | 300 |
250 :

! -8 ATI at AQL
‘ | —a—ASN at LTPD 200 -
! —%—ATI at LTPD

| ——at AQL
|—@—at LTPD 0.5

a8 -0.5 0 0.5 1
‘ dependency factor

< Figure 4 > Trends of the AOQI(%) without replacement according to the dependency
factor o
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6. Conclusions

Generally, if there exists a dependency factor in a statistical problem, it is very
complicated or impracticable to handle the problem analytically. Consequently, we
usually use simulation. In this paper, we have developed design procedures for
sequential sampling plans for dependent process models. The algorithms developed
in this paper can be verified by comparing the results with some known
dependent process model like a Polya process in which the distribution of the
number of defectives can be found by analytical method. In the previous numerical
example, we can see that there are much differences of the resulting sampling
plans according to the change of dependency factor. Also, the behavior of the
sampling plans when the dependency factor is positive is very different from when
the dependency factor is negative. Therefore, when the process shows correlation
between observed items, we should not use standard independent sequential
sampling plans. If independent sampling plans are applied to the dependent process
model, the required type I and II error probabilities can not be met. The extra
cost and time for identifying the dependent process model can be compensated by
avoiding the risk of wrong decision.

One of the problems in applying the procedure to the real world is how to find
the existence of dependency and what the process model is. The study for the
procedure of identifying the process model and its parameters is not addressed in
this paper. However this work must be done before the actual applications. This
can be established by wusing some commercial statistical package and by
simulating the production processes.

As a further study, we can develop the multiple acceptance sampling plans for
any dependent process by extending the work of sequential sampling plans. Also
this research can be used in place of control charts where there is dependency in
the process. It should be emphasized that control charts in industry are used to
check for changes in independent processes, and they should not be used where
there is a recognized and necessary dependency.
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