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Performance Evaluation of New Curvature Estimation Approaches
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ABSTRACT

The existing methods for curvature estimation have a common problem in determining a unique smoothing factor.
We previously proposed two approaches to overcome that problem:a constrained regularization approach and a
mean ficld annealing approach. We consistently detected corners from the preprocessed smooth boundary pbtained
by either the constrained egularization approach or the mean field annealing approach. Moreover, we defined corner
sharpness to increase the robustness of both approaches. We evaluate the performance of those methods proposed
in this paper. In addition, we show some matching results using a two-dimensional Hopfield neural network in the

prescnce of occlusion as a demonstration of the power of our proposed methods.
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1. Introduction

Many curvature estimation methods on a digitized
boundary have been developed to obtain a smooth
boundary both in a discrete domain and in a continuous
domain. However, they had a common difficulty in
determining a unique smoothing factor. We proposed
two boundary smoothing methods to overcome the
above problem in the previous paper[l]. First, we
applied a constrained regularization(CR) technique
which combined a regulanzation and a noise constraint.
We determined the correct degree of regularization
for the boundary in the CR approach using a priori
noise information. In addition, by using the useful
property of a circulant matrix the algorithm was
performed in the frequency domain and the compu-
tation time was significantly reduced. The CR method
worked as well as the generalized cross validation
(GCV) method which was proposed by Shahraray
and Anderson[2]. The GCV method does not require
any knowledge of noise. However, it has higher
computational complexity due to many matrix
decompositions and inversion of large matrices. Both
the CR and the GCV methods for boundary smoothing
worked well to smooth boundary. However, they
caused unnecessary smoothing at corners.

We proposed a second boundary smoothing method
using a mean field anncaling(MFA) technique to
smooth out the noise without losing local information
on the corners. The MFA method solved the simul-
taneous problems of the noise removal and the pres-
ervation of corners. However, it took more time to
obtain the smooth boundary due to the annealing
process. We established a criterion, called corner
sharpness to increase the robustness of corner detection
methods. It mimics the human’s capability of detecting
corners and it compensates for the smoothing effect
of the preprocessing in detecting corners in the curva-
ture function space.

We evaluate the performance of those proposed

methods in this paper. We compare maximum relative
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crrors for various scale factors of a boundary between
the CR, GCV, and MFA methods. In addition, we
compare the maximum residual crrors between the
CR. GCV, and MFA methods. 1t is well known that
mean-squared crror lechniques generally do not provide
a satisfactory measure of noisc removal. By calculating
residual errors we can see the measure of noise
removal as well as preservation of corners. Finally,
we show some matching results in the presence of
occlusion as a demonstration of the power of our
proposed methods. We use a two-dimensional{2-D)
hybrid Hopfield neural network to show reliable
matching results.

This paper 1s structured as follows:Our previous
work is briefly introduced in section 2. Section 3 gives
a comparative study of the performance of the
algorithms proposed in the previous paper. Moreover,
somc matching results using the 2-D Hopfield neural
network based on the corners detected by corner
sharpness are presented as a demonstration of the
power of the proposed algorithms. Finally, concluding

remarks are given in section 4.

[i. New Approaches To Curvature Estima-
tion For Robust Corner Detection

2.1 Constrained regularization approach

We have a knowledge about the quantization noise,
which is the dominant noise. In addition, Recinschl4]
suggests that if the notse variance is roughly known,
then the regularization parameter should be chosen so
that the residual error is equal to the noise variance.
By imposing the above noise constraini, we obtain
the desirable result which is appropriate for further
processing. Thus, we proposed a constrained regula-
rization approach for consistent object representation
in the previous paper[1]. The CR approach avoids the
difficulty of determining a unique smoothing factor
by smoothing the proper amount of noise. In
addition, we can significantly reduce the computation

time by using the propertics of circulant matrices in
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this method. The mathematical details of the CR
approach can be found in the previous paper{1].

2.2 Mean field annealing approach

Bilbro et al. {5] Jeveloped an MFA technique. They
sought a way to smooth out the noise without
eliminating the edges. They accomplished this by
using a global process that combines consistent local
measurements to infer global properties. MFA is an
approximation to stochastic simulated annealing tech-
nique which replaces the randora search by deterministic
gradient descents[6}. This approximation makes the
algorithm converge faster than stochastic simulated
annealing. Since a data point is correlated to its
neighbors in boundaries, we can model the boundary
as a Markov random field. Thus, we can use the
MFA technique for boundary smoothing. We pose
the boundary smoothing problem as minimization of
the sum of a “noise” term and a “prior” term. Thus,

we choose a Hamiltonian as follows:

HUeafm)ZHn(feafm)+Hp(fe) m

where f,, and f, are measured boundary and estimated
boundary for unknown original boundary f. The

noise Hamiltonian(H,,) is

[fe(k)—fm(k)]z

202

Hn(feyfm)=zkl 2)

where a2 is a noise variance. The prior Hamiltonian
(H,) represents the measure of a certain local property.

This can be written as

1 Ai
Hp(fe)=—??7‘: exp (__2_7?) 3

Ay is the operator on the neighborhood of the k-th
clement. We use a discrete form for the second
derivative for A, as in the CR approach because it
represents the roughness of data. & is a weighting factor
for the prior Hamiltonian against the noise Hamiltonian,

and 7 is a control parameter known as “temperature”.

The Hamiltonian, H(f,, f,) may have many local
minima and behave poorly in other ways. Hence,
instead of minimizing H, we approximate H with a
simple convex function Hy which is easy to minimize.
H, must depend on a set of parameters to be similar
to H. Then, we adjust those parameters in such a way
that H, will be similar to H. We choose H,

N1

Ho(u,fe)=k§ [u(R) — fo(R)? )

The above H, has only one minimum since it is a par-
aboloid. Thus, minimizing H, is simple. We have a
convex form and we can find the u’s which make H,
simnilar to H. Mathematical details can be found in

the previous paper{l1].

2.3 Robust corner detection

The CR method slightly smooths out corners and
the resulting curvature at corners are spread over the
neighbors. Unless we give a-little tolerance when we
detect corners in this curvature function space, we
may miss some corners. Thus, we detect corners
based on the f{ollowing empirically derived result
when we use the CR approach|[1]:

Each point on a boundary is considered as a corner
if one of the following conditions are satisfied :
IOCAst32{c+l)IOn for  ¢=1,23 (5
Only the points which satisfy one of the above three
conditions are considered as corners in the CR
approach. However, we already have shown that the
MFA method preserves corners very well, and the
resulting curvature function has large and sharp cur-
vature extrema. Thus, we can easily detect corners
with the first condition only in the MFA method.

. Performance Evaluation

3.1 Curvature estimation

Current curvatuse estimation mcthods have a common
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problem in determining a unique smoothing factor.
Shahraray and Anderson(2] solved the above problem

with the GCV method based on the smoothing spline
approximation. They showed good resullts for a

smooth boundary in Fig.1(a). The continuous bound-
ary was sampled at 360 points corresponding to =0,
1,...,359 degrees. The starting point is marked with
‘s’ The direction of tracing is counter-clockwise. The
curvature function as a function of t of this noise-free
boundary curve is shown in Fig.1(b).

Cross-validation is a data-driven method for esti-
mating the correct degree of regularization. It does
not require noise information for curvature estimation.
However, the GCV method itself may fail catastro-
phically in some circumstances, producing either no
positive smoothing parameter or a underestimated
smoothing parameter(2]. In addition, the GCV method
is mathematically intense due to many matrix deco-
mpositions and the requirement to obtain the inverse

woy

180 ._Jm

160

-

i

L J \ /\\ !
N ANV A W

\/
y

SO20E e
o 700 00
'

(b)

Fig. 1 Original smooth boundary and curvature ; (a) original
boundary (b) curvature.
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Fig. 2 Quantized boundary and curvature;{a)quantized
boundary (b) curvature.

of large size matrices. We used the CR technique to
solve the same problem. We quantized the original
smooth boundary to test the performance of the
algorithm. Fig.2(a) is the quantized boundary which
was interpolated into the nearest integers. Fig.2(b)
shows the noisy curvature function directly computed
from the quantized boundary. We applied the algor-
ithm to the x-and y-coordinates separately. Then, the
preprocessed x-and y-coordinate values compute the
curvature function. We had almost the same results as
Fig.1. Our boundary smoothing constraint is a little
stronger than that used in the GCV method. In other
words, we regularize the digitized boundary until the
noise constraint is satisfied. We also showed excellent
smoothing results with the CR method for the
smooth boundary.

Table-1 shows maximum relative errors in the meas-
urement of curvature for the GCV, CR and MFA
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Table 1. Maximum relative errors(Fig.1(a)).

Method GCV

CR MFA

2.0 4.0
0 0° 0°

0.5
150°

Scale factor(sy)
Rotation(¢)

4.0 0.5 4.0

150° | 0° 0° 0°

Maximum relative

4.19 | 498 | 830 | 8.10

errors (%)

6.68

6.70 | 6.11 | 738 | 6.50 | 6.81 | 7.12

approaches for Fig.1(a). Maximum relative errors are
obtained by:
X,—X,
(.I_Q___L.I-) x 100
(6)

maximum relative error(%) = max
0

where «, and «, are the curvatures of the original
bcundary and the smoothed boundary, respectively.
The GCV method had better maximum relative errors
when scaled by a factor of 0.5 and 2. However, the
CR and MFA methods had better maximum relative
errors for a scale factor of 4 and with rotation.
Hence, we can say that those methods work well in
general. However, the boundary in Figl is very
smooth. It does not have any discontinuities in the
derivatives(i.e., corners). Shahraray{2] showed that the
smoothing spline was not an appropriate model for
representation of corners. The presence of corners in
the boundary results in a considerable amount of
error in the prediction of corners. We had almost the
same results with the CR method as those achieved
with the GCV method. However, the problem caused
by the smoothing effect at corners can be overcome
by the use of corner sharpness in the GCV method as
well as in the CR method.

We proposed another boundary smoothing method
using the MFA technique for curvature estnctions
and the residual errors of x-and y-coordinate values
of the preprocessed boundaries using both the CR
method and the MFA method to evaluate the per-
formance of the algorithm. The dotted line of the
overlapped boundary in Fig.3(a) is a test boundary
(Test-1 boundary) generated with lines, and a circular
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Fig. 3 Results of the the CR method for Test-1 boundary;
(a) overlapped boundary (b) curvarure.

arc. It includes some discontinuities. The boundary is
represented by the 8-neighbor Freeman chain code.
Fig.3(a) shows the overlapped boundary between the
original boundary and the boundary preprocessed by
the CR. The CR method works well in a sense of
noise removal or smoothing. However, we can clearly
see the unnecessary smoothing on corners even
though the CR method does not cause oversmoothing
as in other current smoothing methods. Fig.4(a)

shows the overlapped boundary between the original
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Fig. 4 Results of the MFA method for Test-1 boundary; (a)

overlapped boundary (b) curvature.

boundary and the boundary preprocessed by MFA.
We can see that the curved part is smooth and the
corners are preserved very well. By computing curva-
ture functions from the smooth boundaries we can see
that the MFA method gives better performance in a
sense of preservation of corners. The absolute values
of curvature extrema in Fig.4(b) are clearly larger
than those in Fig.3(b).

By calculating residual errors we can see the
measure of noise removal as well as preservation of
corners. We can clearly see from Table-2 that the
maximum residual errors in both the CR method and
the GCV method are larger than those in the MFA

method. Maximum residual errors are obtained by:

maximum residual error=max [ f.—f,| 7

where f, and f, are the smoothed boundary and the
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Table 2. Maximum residual errors(Test-1 Boundary).

Method l GCV f CR MFA
x-residual errors 1 1.40 ' 1.50 0.90
s-residual errors { 181 1 160 0.57

original boundary, respectively. It therefore implics
that the CR method and the GCV method have dis-
torted the corners. Such distortion is less evident in
the MFA method.

3.2 Corner detection

We established the criterion called corner sharpness.
It mimics the human’s capability of detecting corners
and 1t compensates for the smoothing effect of the
preprocessing in detecting corners in the curvature
function space. We applied this criterion to the curva-
ture functions obtained by the various methods.
Table-3 shows the number of corners detected in the
various methods for three model boundaries(model-1 :
gun, model-2:hammer, model-3:plier) and two input
boundaries(input-1 : gun +hammer, input-2: gun -+ plier).
They will also be used to show matching results in the
next section. We obtained the results of human
observers in the table by asking several people to
choose corners in the given boundaries. As shown in
Table-3, we detected almost the same number of
corners using corner sharpness and the CR approach
as human observers did. Qur results using corner

sharpness and MFA gave equally good results.

3.3 Matching resuits

As a demonstration of the power of the corner
detection algorithm, we consider an example of matching
the silhouette of a partially occluded object to a
model. We formulate object recognition as maiching
a model graph with an input image graph. We pose
this graph matching problem as an optimization
problem where an energy function is minimized. This
optimization problem can be mapped into the
Hopfield network(7]. Li and Nasrabadi[8] applied a

discretc Hopfield network to image matching, using
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Table 3. Number of corner points in various methods.

| Gaussian smoothing
g=2 =4 =8 CR method MFA method Human
Modcl‘-ﬁlw | [3 o ~; - 3 11 11 11
Model-2 0 | 8 | 4 3 8 8
Vmicl-?” o 9 I 5 4 6‘“ 6 6
lnpull 1 17 11 3 15 12 13
Input-2 V 29 772717 » 1’6< ‘ 21 o 21 21

sub-graph matching (isomorphism) to recognize
objects. The discrete Hopfield network is formulated
as a 2-D array. Rows correspond to an input image
and columns correspond to an object model. The output
of neurons after convergence shows the measure of
similarity between two images. Lin et al. [9] applied
the same structure of Hopfield network to 3-D object
recognition. However, they used a continuous type of
Hopfield network for better matching results, which
takes more time to arrive at stable states.

We proposed a hybrid Hopfield neural network by
combining the advantage of continuous Hopfield net-
work and the advantage of discrete Hopfield network
which gives excellent matching results very fast. The
details of the hybrid Hopfield network can be found
in [10]. Thus, we use the 2-D hybrid Hopfield network
for matching in this paper. A graph is constructed to
create a model for each object using unique corner
points as nodes of the graph. Each node has local
features(angle) as well as relational features(distances
between nodes) with other nodes. Not only relations
between neighboring corners but also relations
between all other corners are used as constraints to
increase the robustness of the algorithm. During the
matching procedure, we construct a similar graph for
the input image which may consist of one or several
occluded objects. Each model graph is then matched
against the input image graph to find the best
matching subgraph. Fig.5(a-c) show matching results
hctween Model-1 and Input-1, between Model-2 and
Input-1, and between Model-1 and Input-2, respect-
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Fig. 5 Matching results;(a)model-1 vs input-1 (b) model-2
vs inpul-1 (¢)model-1 vs input-2.
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ively. The nodes marked ‘*’ in the figures represent
the matched nodes. As shown in Fig.5, they show
excellent matching results between model objects and

input objects in the presence of occlusion.

IV. Conclusion

We compared the performance of our proposed
curvature estimation and corner detection methods
with current methods in this paper. The CR method
resulted in slight unnecessary smoothing at corners.
However, it did not cause any serious problem in
detecting corners since corner sharpness compensated
for the unnecessary smoothing effect at corners. In
addition, the computation time of the CR method
was small since it was performed in the frequency
domain with the useful property of a circulant matrix.
On the other hand, the MFA method preserved
corners very well. Hence, we detected corners easier in
this approach than in the CR approach. However, it
took more time to obtain the smooth boundary due
to the annealing process. The performance of the CR
method and the MFA method in detecting corners
were as good as that of the human observers. Finally,
we showed some matching results based on the
corners detected by our proposed approaches to support
the excellence of our methods even in the presence of
occlusion. We used the 2-D hybrid Hopfield neural
network for matching. It converged to the stable

states fast and showed excellent matching results.
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