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The Multidimensional Subsampling of Reverse Jacket Matrix of
Weighted Hadamard Transform for IMT2000
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ABSTRACT

The classes of Reverse Jacket matrix [RJ]|y and the corresponding Restclass Reverse Jacket matrix ([RRJ]w) are
defined ; the main property of [RJ]y is that the inverse matrices of them can be obtained very easily and have a
special structure.

[RJ]y is derived from the weighted Hadamard Transform corresponding to Hadamard matrix [H]x and a basic
symmetric matrix D. The classes of [RJ], can be used as a generalized Quincunx subsampling matrix and several poly-
gonal subsampling matrices. In this paper, we will present in particular the systematical block-wise extending-method
for [RJ]y. We have deduced a new orthogonal matrix M, € {RRJ]y from a nonorthogonal matrix M,E[RJ]y.
These matrices can be used to develop efficient algorithms in IMT2000 signal processing,, multidimensional sub-

sampling, spectrum analyzers, and signal scramblers, as well as in speech and image signal processing.
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1. Introduction

In fields of communications a large number of time
functions can be represented by superpositions of sine
and cosine functions. So Fourier analysis is often used
as a mathematical tool to analysis a time function. The
transition from the system of sine-cosine functions to
general systems of orthogonal functions brings simpl-
ifications as well as complications. Hadamard matrices
are named after their discoverer, J. Hadamard in
1893. They have been applied in a number of fields.
A Hadamard matrix of order n is an {(nXn) matrix of
+1s and —1s such that any pair of distinct rows is
orthogonal(i.e., their product is zero).

The arithmatic operations for Hadamard transform
consist of only additions and subtractions instead of
multiplications because of its matrix elements(+1s and
— 1s)[1]~[4]. The several algorithms have been developed
for computing N-length Hadamard transforms and the
number of operations, N°, are lessened to N logaN.
These are usually generalizations of the Cooley-Tukey
FFT algorithm. The application of Hadamard trans-
forms for signal and image compression is well known
[1]~[4]. A much investigated method, duc to the ease
and efficiency of its implementations, is based on Ha-
damard transform [2]. It has been presented in paper
[1] that Walsh-Hadamard transform is the most well
known of the nonsinusoidal orthogonal transforms.
Walsh-Hadamard matrix is used for the Walsh repre-
sentation of the data sequences in image coding and
for PN(Pseudo-noise) generator in CDMA mobile com-
munication. Their basis functions are sampled accord-
ing to Walsh functions which can be expressed in terms
of the Hadamard matrices [H]y. Using the orthogon-
ality of Hadamard matrices we construct a generalized
Weighted Hadamard matrices [2], [5], (6], called Re-
verse Jacket matrices([RJ|y), and they have reverse
g@omctric structures. In this paper, [RJ]y and its sub-
sampling examples are described. [RJ]y is nonortho-
gonal but the restclass of Reverse Jacket([RRJ]x),

which is subset of [RJ]y, is orthogonal. These matrices

can be used to develop efficient algorithms in IMT2000
signal processing,, multidimensional subsampling,
spectrum analyzers, signal scramblers, and infor-
mation theory as well as in speech and image signal

processing.
II. The Weighted Hadamard Transform(WHT)

Let Hadamard and Weighted Hadamard matrices of
order N=2* be denoted by [H]y and [WH]y, respect-
ively. The WHT of an N X1 vector [f] and an NXN

(image) matrix [g] are given by [8] as follows

[Fl=[WH]x[/] 6]
and
(Gl=WH]y [IIWH]} ()

The lowest order Weighted Hadamard matrix is of
size (4x4) and is defined as follows [5];

111
O 3)
R o2 -2 = |

I -1 -1 1

The inverse of (3) is

2 02 2 2
Pj2-1 1-2

WHI = — @
WHIL = 2 1 -1 =2
2 -2 -2 2

This choice of weighting was dictated, to a large ex-
tent, by the requirement of digital hardware simplicity
[2]. As with the Hadamard matrix, a recursive relation
governs the generation of higher order Weighted Ha-

damard matrices, i.e.,

(WHN=[WHI|N, ® [H]:, (5)
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where & is the kronecker product. [H], is the lowest

order Hadamard matrix given by [1], [4]:
1 1
=], ©)

The fast algorithm of WHT(2] is related to the fast
Hadamard Transform(FHT) algorithm [2], {4], [8]. The
FHT can be derived by decomposing { H]y into a pro-
duct of k sparse matrices, each having rows/columns
with only two nonzero elements. In order to develop
a similar algorithm for the WHT, define a coefficient
matrix [RC]y by

[RCIw=[HINIWH]~. @)
Since [H]7' = 1/N[H]~, we have from (7) that
[WH1y' = 1/N[H]In[RC]x. (8)
. Reverse Jacket Matrix

The [RJ]x is a generalized form of [WH]y. As our
two side jacket is an inside and outside compatible, at
least two positions of a Reverse Jacket matrix [RJ]wn
are replaced by their inverse;these elements arc
changed their positions from inside of the middle
circle to outside or from outside to inside without loss
of signs;which are very interesting phenomena. This
is the reason why we call it Reverse Jacket matrix.

If we regard the upper left (2X2) block matrix D
of [WH1~ then we can find some regular and recursive
structures. Therefore we define several sip matrices for

[RJ]~ as follows:

|
VAR 9‘

[Sl.2 0
0—1]’ zzll

Y oand W [01}
, an & .
ol * “l-10

©)

Let I» and 0x, kEN be the (2¥ % 2%) unit matrix

and zero matrix respectively. Then for 221 we get
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I 0 0 Ip
szu:l ? l SZAu:[ z ? and
Op —1In Ix O
Ozn 12A
T = . 10
! l"lzﬂ 02‘] (1
Further we define
a b
= :Ml,a, b,C?éO,
b —c
M,=2Z,DS;and Ma=J,'DJ,. an
Finally, we define the [RJ]s as
a b b a
(RJ] A[M‘ M;I_ b —¢c ¢ —b (12)
‘= M3 M., b ¢ —¢c —b
a—-b—-b a

Throughout the whole paper we assume that D is
invertible. We define the inverse Reverse Jacket ma-

trix as follows:

[RJ];.IZCkLk, kel{l, 2}, ck€R (13)
where

= —signunla-c) = 1

' det(IRJ)y) °  * alcrda, b, o)

(lem denotes least common multiple).

) c b
L, = signumla-c) [ , (19)
b —a

1fa 1/6 1/6 1/a
1/6 —1/c 1fc —1/b
.= b ¢
Ly =lcnda, b, ¢) b e —1jc —1b | (15)

lJa —1/b =1/b  1/a

The matrices [RJ]», 223 will be defined subsequ-
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ently. The fast algorithm for the Reverse Jacket trans-
form(FRJT) is similar fashion as in [5]. The fast
Hadamard transform(FHT) can be derived by decom-
posing [H]» into a product of sparse matrices, each
having rows/columns with only two nonzero elements.
The Sylvester construction for Reverse Jacket matr-
ices can be expressed recursively in terms of Kronec-

ker product.
1 1
Rl =@ R | | @R,

k>2. (16)

If [RJ)x, (=2), is a Reverse Jacket matrix, then

following equation is possible.

(RJ]p v = [RIz TR , k22 a7
[RI]x —[RJ]»

Now, we define a coefficient matrix [RC]» by

[RCl» ="sz‘ [ [RIw, k22, a8)

Then, the following equation is also possible.

[RCypn = [H]yr [RI]z 00
=[H]»+ ([H]; ® [RJ]»)
=([H, ® [H1»)(H]; ® [RJ]»)
=20LQ ([H]»[RJ])
=20&® [RClx. (19)

IV. Restclass Reverse Jacket Matrix

Analogously to (9)-(12) we construct the higher
dimensional Reverse Jacket matrices as follows:
ﬁ] ﬁz

[RI]#n 2.( ~

pay ) k22, (0)
2 4

where My=|RJ)», My=Zx|RJln,
and M, =J73™% Iy

Let
c - ¢ c - Com, M1 1)
2m+1 — 4 2m—1, C2m+2 4 2ms .
and
Dt Bt Bm-1 — Dy

Bum-1 —Awm-1 A1 — Bam-
Bum-1 Awm-1 —Awn-1 — B
—Dim-t =BTam-1 —BTam1 —Dame

(22)

Lom +1 = signuma, ¢)

where

Amm-1=[RIm, Bim-1=Z[RJ2nS2=, Drm—y
= = Jo[ R = J2m.

Then,

- D2m B T2m B TZm - DZm
Boyn —Am Awn  —Bm

Lom +2= 23)
Ban  Awm —Awm —Bum

_DZm '“BTZm —BTZM — Do

and

Arm= Lo, Bz,n:Zz"'LZmSZ"';

Dam= —Jo= Lo J 31m. 4
Let
[RI]» is element of [RJ|w R, (25)

A 2% 2% matrix [RRJ)»=[RJIn—Ls, k=2 is said
to belong to the Restclass of Reverse Jacket matrix
respect to Hadamard matrix Hy if

[RRI2»=[RRJI1" [RRI]» |H] 2. (26)

where
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[RJ];.IZCkLk, crE€IRN{0}
and [RRJ|x, Lr€C¥<% k>2.

The equation (26) is also equivalent to:

[RRI1% =[H)5, [RRJ) % [H]»
=[RRJIY} @n

and

1 *
[RRI, k>2. (28)

[RRIL = det((RRJ1»)

We can construct 4x4 H-orthogonal matrices as-
sociated with Hadamard matrix [H]» starting from a
2 X2 nonorthogonal matrix D, and each matrix [RJ]»

for k=2m +1, m>1 is Restless of Reverse Jacket matrix.
V. The Examples of Reverse Jacket matrices

There are five cases in the elements decision of basic
symmetric matrix, Dy(k=1, -+, 5), which is [RJ],. The
matrix Dk consists of three elements(az, b, and c¢).
which are all not zero and take the values of +2' (i=
0, 1, ---). Their conditions are a<b<c and each el-
ement takes the minimun integer value under the up-
per conditions. It can be used for multidimensional

subsampling of signals.

1) Case- |

If the elements are all same, @ =b=c then they are
all ones, a=b=c=1, and the basic symmetric matrix
DI=[RJ]2 is same as Hadamard matrix [H], and as

following.

b

Dy=[RJ]; = “
e =[

11
1 =1

From equation (12), the [RJ]4 is obtained.
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[RJ]4 = : - (30)

Since the determinant of [RJ], is 2, the sampling
ratio and the number of subchannels are 2. The [RJ]s
is same as Hadamard matrix [H]4, which is orthogonal
symmetric matrix as well as special case of [RJ]4 and

[R}]; is a Quincunx subsampling matrix in this case.

1 1 1
The inverse of [R]]; is — [ L1l and [RJ]; and its

2 1

inverse matrix [RJ];' consist of same elements also.
When this is used for data coding, the transmit and

receive units are same.

(RN =catp= | P71 T G1)
eI oo ;

2)Case- Il

If the two elements of @ and b are same but ¢ is
different from them, @ =b#c¢ then they are a=b=1
and ¢=2. In this case, D;=[RJ], is same as upper
left 22 elements of [WH]4 and nonorth-ogonal sym-
metric matrix.

1
and [RJ]3' is 5

2

1

I 1
The [RJ]2 1
el ]‘lSII—Z

1
_1].This

means that the sampling ratio and subchannels are all

0
o

Reverse Jacket matrix and its inverse one have a fast

3. The coset vectors are and . The 4x4

0

algorithm as shown in Fig. | and are following.

[RI)a= . and
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2 2 2 2
12—t 1 -2
RI =~ 32
[RJ1: sl 1 21 -2 (32)
2 -2 =2 2
3)Case-1l

In this case, the elements of @ and ¢ is same but the

only c is different, a=c#b then they are a=c=1

and b=2. The basic matrix D;=[RJ]; is and

12
21

1 ]1
the [RJ);' is < lz _?l which is —; [RJ}:. The [RI]s

and [RJ];' are symmetric non-orthogonal matrix as

follows.
1 2 2 1
2 —1 I -2
[RJ]s= , and
2 I —1 =2
I -2 =2 1
2 1 1 2
1 1 =2 2 -1
[RI];'=— 33)
sl o2 -2 -1 (
2 -1 —1 2

The two positions of [RJ]4 can be replaced by [RI]7'

also.

4)Case-IV
If the only two elements of b and ¢ are same but a
is different then they are 2=1 and b=c=2. The [R]]:

L2
Sl2 -2

and inverse Reverse Jacket matlrix is nonorthogonal

. The 4x 4 forward

.12 2
and [RJ]3' is [2 -

symmetric matrix and is following.

1 2 2 1
2 -2 2 =2
[{RIjs= , and
2 2 -2 =2
1 -2 -2 |

2 1 1 2
IS B

RIS =— : (34)
St

2 -1 -1 2

5)Case-V
If all elements are not equal each other, a#b#c

and a#c, then they are a=1, b=2 and c=4. The basic
i
symetric matrix Ds=[RJ}; is lz _i and [RJ]' is—;—
4 2
2 ~1

sampling ratio and subchannels are 8. It has eight

. This is polygonal subsampling case of which

coset vectors.

1 2 2 1
2 -4 4 -2
[R.lla: N and
2 4 -4 =2
1 -2 -2 1
14 4 1
i 4 -2 2 —4
RI = — :
Ri=e |0 T 35)
1 -4 -4 |

In this case, each matrix has three zones which are
+1’s, +2’s and *+4's areas. The +1's, +2’s and +4's
areas of [RJ]s are able to be replaced by +4’s, +2’s
and +1’s areas of [RJ];' respectively.

The two positions of [RJ]s can be replaced by [RJ]3'

also.

VI. The Multidimensional Subsampling

The subsampled version of a D,-Dimensional signal

x,(t) is defined as

x(n) = x,(V,), (36)

where V is a integer DX D nonsingular matrix.
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#1 #2 #3
x(0) x{0) x(0) —*—x,(0)—H—x(0)

x(1) x(1) 1)<t x (1) ——x(1)
2

X1(2) /\ xz(z) >< X!(Z) : x‘(z) 14 XS(Z)
x(3) x3) 5(3)——z Q) —4—x03)

(a) Forward
#1 #2 #3
x,(0) x(0) x2(0) 22— x(0)
x(1) (1)< xy (1) <M x (1)
0.0625
x(2) x(2) x(2) <5 g75 > %i(2)
x(3) L= x(3) (3)—2E—x(3)

(b) Inverse

Fig. 1 The fast algorithm for [RJ]4 and [RJ]}' flow graph.

V=[ve v1 -+ vp,—1], (37
and #€ N. The set of all sample points is the set

t=Vn, neN (38)

Dy~

that is, the set of vectors Y. #;v;. This is the set of all

i=0
integer linear combinations of the columns vo, v, -,
vo,—1 of V which is called subsampling matrix [RJ],.
The kth element of Z(M) is given by

Mo, &

Mk k=0, 1, (39)

)

so that we have

YARES

@ Zl_l (Quincunx 2). (40)

20 2,

So for the Quincunx expander, the output can be re-

written as
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1 1
(a) Subsampling lattice, D, = [ L ] .

a

-

ll]
1 -2]

Fig. 2 The subsampling lattice of [R}],.

(b) Subsampling lattice, D, =

Y20, 21) = XA2021, 2027"). @4n

Fig. 2 shows the examples of subsampling lattice with
D, and D, of [RJ];.

In Fig. 3, the filter banks with D, D;, and Dj sub-
sampling and ideal spectrum splitting are shown. Fig.
3(a) demonstrates a typical set of desired magnitude
responses for the three-channel analysis filters. The
passband of the filters are nonoverlapping. In the fre-
quency region designated as passband for the filter
Hi(z), all other filters have their stopbands. The paraun-
itary property of E(z) ensures that the analysis filters

power complementary.
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D

0 2n/3 n W

(a) Typical magnitade responses for an analsys bank with
three channels.

E@)

{b) Three-channel analysis bank, with Hy(z) = H;{2).

Fig. 3 The magnitude responses and analysis bank of three
channels.

For the three channel real coefficient case, the sym-
metry condition s able to be incorporated by the fol-
lowing constraint.

Hy@ =Ho(-2), Hi{n)=az") (42)

IHgle 19l IHatel?))

+

R ] LS T
0.0 0.1 02 03 0.4 0.s
Normalized frequency ( w/2x)

Fig. 4 Magnitude responses of analysis filters for a three chan-

nel FIR perfect reconstruction system, and filter order
N =55,

o @«--%@m

oo

SN S
e

1
(a)Subsamp D, ={ |

Y220

, and frequency spectrum.

s H_@@ﬂ e

i
(b)Subsampling matirx is Dﬁ[ .

1
_ ZI' and frequency spectrum.

o e

Wil
i

L '“@*m‘

. _ P2
(c)Subsampling matirx is D,F—"[ - ] and frequency spectrum.

Fig. 5 Filter banks with Dy sampling and ideal spectrum
splitting.

The frequency response of an FIR perfect reconstr-
uction system based on Fig. 3(b) which shows a str-
ucture for imposing equation {(42) is shown in Fig. 4,

Fig. 5(a) shows the two-band splittings and Quinc-
unx frequency spectrum. In Fig. 5(b), since |det(D,)!
is 3, the subbands are 3 and the shapes frequency
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spectrum are polygonals. Fig. 5(c) shows the structures
of band splittings with 5 subbands and each passband

spectrums are polygonals also.

VI. Conclusions

Hadamard matrix is an orthogonal symmetric ma-
trix but the weighted Hadamard matrix is a nonor-
thogonal symmetric matrix and slight modification of
a Hadamard matrix. The Reverse Jacket matrix is a
generalized weighted Hadamard matrix form and has
recursive structure and symmetric characteristics. The
elements positions of the matrix can be replaced by its
inverse matrix and the signs of them are not changed
between the matrix and its inverse. The [RJ]y matric-
es have five cases of basic symmetric matrces accord-
ing to the elements conditions. Hadamard matrix is a
special case of Reverse Jacket matrces also. In this
paper, the subsampling examples of [RJ]; have shown
and the subchannels are equal to the determinants of
the subsampling matrces. These matrices can be used
to develop efficient algorithms in signal processing,
for IMT2000, multidimensional subsampling, spectrum
analyzers, and signal scramblers, as well as in speech

and image signal processing.
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