Electrical Properties of Transformer Oils due to Electron Beam Irradiation

Yong-Woo Lee, Don-Chan Cho, Jin-Woong Hong

Abstract

In this paper, the change of electrical properties of transformer oil due to electron beam irradiation is investigated. The specimens are produced with a some different dose of 0.5(Mrad), 1(Mrad) and 2(Mrad) except for original specimen.

The physical properties of each specimen is analyzed by using the FT-IR spectrum. So, it is confirmed that carbonyl groups are increased according to the increase of electron beam dose, and also that the nitric compounds are disappeared.

The magnitude of dielectric dissipation factor appears maximum value by the contribution of dipoles and ions in the low temperature, low voltage region, and it is stable due to the saturation of carriers in the high temperature, high voltage region in the electric conduction characteristics.

Volume resistivity is also measured, one of original specimen is larger than irradiated specimen.

Key Words: Transformer Oils(변압기유), Electron Beam Irradiation(전자선조사), Dissolution, Dielectric Dissipation Factor(유전손실계수), Volume Resistivity(고전저항)

1. 서론

우리나라의 이전 전압은 이전 초고압 시대로 질어 들어서 각종 전력기기의 전개성 황상과 내력을 대한 고신뢰도가 점점히 요구되는 시점에서, 전력 변전소의 전기기기의 역할을 지원하기 때문에 전압기의 전기 및 전기구연 성능에 대한 영향을 고심할 필요가 있다고 판단된다.10,11

특히 전력수요의 지속적인 증가로 인해 향후 전력전압의 상승에 따른 전압기기의 전개 전압의 상승이 예상 결연 재료의 결연 성능을 장애를 줄 수 있으므로 고에너지에 노출된 전압기유의 물성 및 전기적 특성에 대한 영향을 고심할 필요가 있다고 판단된다.10,11

본 연구에서는 최근 들어 환경변화에 많이 사용되고 있어 전력전압의 상승을 고심할 필요가 있다고 판단된다.10,11

2. 실험 방법

2.1 실험시료의 제작 및 구분

실험에 사용된 전압기유는 나프텐계 유해에서 제조된 것으로 일체의 혼합기를 넣지 않았다. 실험 주입 전력에 발생되는 기포의 영향을 최소화하기 위하여 전공 대시계이 내에서 10^-7 Torr 정도의 전동도에서 2시간동안 전압작용 과정을 마친 후에 실험하였다.

실험에 사용한 시료는 전력전압기유를 이용하여 전압기유 조사한 시료에 제작된 각 시료의 전자
선 조사량은 表 1과 같다.

<table>
<thead>
<tr>
<th>사례</th>
<th>인가에너지(E), 전류(I)</th>
<th>평균 횟수</th>
<th>조사량(Mrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>Original</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>No. 2</td>
<td>E=1(MeV), I=5[mA], u=5[m/min]</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>No. 3</td>
<td>E=1(MeV), I=10[mA], u=5[m/min]</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>No. 4</td>
<td>E=1(MeV), I=10[mA], u=5[m/min]</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

시료에 동일전량의 전자선을 조사하기 위하여 전자류가 많은 방사능의 반응속도를 평가할 필요가 있고, 처리량은 이것에 미치지 않아야 할 것이다. 실제로 조사에서 사용되는 CTA 선량계를 이용하여 상수 K 값을 미리 구해 놓고 전자선 조사량 D를 식(1)에서 구한다. 즉, 인가전류와 평균 횟수를 조절하여 전자선 조사량을 변화시킨다.

\[ D = k \frac{I}{u} \quad \text{[Mrd]} \quad (1) \]

시료 제작은 공기 중에서 변압기용의 PYREX 사례를 이용하여 전자선 조사 장치의 원도우로부터 18(cm) 범위에 큰 conveyer에 플레이 놓고 전자선을 조사 하였다. 전자선 조사 장치의 원도우 부에 대한 개략도는 그림 1과 같다.

그림 1. 전자선 조사 장치의 개략도

Fig. 1. Schematic diagram of the device for electron beam irradiation

2.2 실험장치의 구성

전자선 조사에 의한 변암기용의 열화가 유전특성에 미치는 영향을 조사하기 위하여 조사항에 따른 유전장의 주파수 의존성, 온도 의존성, 그리고 전압 의존성을 실험하였다.

본 실험에 사용된 전극은 기하학적 정면에

16.0[pF]의 동축 원형 전극을 사용하였고, 온도조절을 자동 온도 조절기를 내장하여 일정한 온도를 유지할 수 있는 오븐(TO-9B, ANDO)을 사용하였다. 유전장의 측정에는 주파수를 30[Hz]에서 150[kHz] 까지 변하게 할 수 있고, 인가전량은 300[mV]에서 1500[mV]까지 변하게 가능한 측정기(Video Bridge 2150, Electro Scientific Industries Inc.)를 사용하였다. 그리고 전자선 조사된 시료의 오븐내에서 20[℃]~120[℃]까지 변화 시키면서 온도 변화에 따른 특성도 측정하였다.

또한 국제규격에 따른 변압기의 시험온도 80[℃]에서 전자선 조사된 시료의 제작고유지함을 측정하였다. 미요 전류계인 VMG-1000 Highmegohm meter를 사용하여 적응전압 100[V], 250[V], 500[V], 1000[V]를 step 및 고압에 따라 인가하여 각 시료의 제작고유지함을 측정하였다. 실험에 사용된 전극장치 및 실험 장치의 개략도는 그림 2와 같이 유전 특성실험(실선)과 제작고유지함실험(점선)을 각각 분리하여 실험한다.

그림 2. 전극 장치의 개략도

Fig. 2. Schematic diagram of experimental device

3. 실험결과 및 고찰

3.1 시료의 분석분석

전자선 조사된 시료의 분석을 분석하기 위하여 FT-IR spectrum을 조사하였으며, 그 결과를 그림 3에 나타내었다.

변압기용의 전자선 조사량 변화에 따른화학구조 변화를 조사하기 위해 FTIR spectroscopy을 사용하여 분석한 결과, 원시료와 전자선 조사된 시료의
차이점으로는 원시료의 경우 파수 2500(cm⁻¹)에서 나타나는 질소계 화합물이 전자성에 조사할 시료들 에서는 전자성 조사량과 관계없이 모두 없어진다는 것을 확인할 수 있다.

그림 3. 실험시료의 적외선 스펙트럼
Fig. 3. FT-IR spectra of experimental specimen

일반적으로 질소계 화합물은 나프렌계 절연류 내 에 극히 미량이 섞겨 있는데, 이들은 약간의 결합을 하고 있어서 전자성으로 인한 조사에 영향을 미치며 결합이 약한 부분의 분해로 인해 피크가 사라지는 것을 알 수 있다.

그리고 파수 1725(cm⁻¹) 범위에서 원시료의 피크보다 전자성 조사된 시료의 피크가 매우 증가됨을 확인할 수 있는데, 이것은 전자성 조사량이 증가함에 따라 변압기유의 산화되어 변압기유 내에 Carboxyl glue가 증가하기 때문에 나타난 것임을 확인할 수 있다.

또한 유안의 환경으로 전자성 조사된 변압기유의 변화를 식별할 수 있는데, 전자성 조사량의 증가에 따라 변압기유의 산화 점차 진행하고 불충분한 것으로 변환들을 확인할 수 있었으며 변압기유의 정도 역시 전자성 조사량의 증가에 따라 컷점 확인하였다.

3.2. 유전특성
(1) 주파수 의존성
액체 절연유 중에서 변압기유 원시료와 전자성을 각각 0.5(Mrad), 1(Mrad), 2(Mrad)로 조사한 시료에 대한 전기적 특성을 연구하기 위해 유전특성을 실험하였다.

인가전압 500[mV], 온도 35(℃)와 80(℃)의 시료에 대한 유전특성의 주파수 의존성을 각각 그림 4와 그림 5에 나타내었다.

그림 4. 인가전압 500[mV], 온도 35(℃)에서 유전특 성의 주파수 의존성
Fig. 4. Frequency dependence of dielectric characteristics in the applied voltage 500[mV] at 35(℃)

그림 5. 인가전압 500[mV], 온도 80(℃)에서 유전특 성의 주파수 의존성
Fig. 5. Frequency dependence of dielectric characteristics in the applied voltage 500[mV] at 80(℃)

그림 4에서 보면 저주파수 영역에서 전자성 조사량이 0.5 [Mrd]인 시료는 유전특성의 크기가 일정적으로 감소하는 것을 볼 수 있으나, 원시료와 전자성 조사량이 1 [Mrd], 2 [Mrd]로 시료의 절연성은 감소하는 측정치가 거의 차이를 나타내지 않고 약 250[Hz] 부근에서 저주파수 영역에서의 피크는 낮지 않아 나타날 수 있다.

그러나 3[kHz] 이상 영역에서는 시료 모두 유사한 유전특성의 크기와 주파수 의존성을 나타내며 확인할 수 있다. 전자성 조사량이 0.5[Mrd]로 시료의 저주파수 영역에서 이온의 고전성 기여로 인해 다른 시료보다 유전특성의 크기가 크게 나타나는 것으로 생각된다. 그리고 고주파수 영역에서의 피크
크는 약 10[kHz] 영역에서 일정하게 나타나는 것으로 보아 주파수의 영역에 의한 피크로 생각된다.
그러나 온도가 80[℃]로 높아지면 피크가 나타나는 주파수 영역이 약 200[Hz] 영역으로 이동함을 그림 5에서 확인할 수 있으며, 유전정점의 크기가 200[Hz]~2[kHz] 영역에서 감소하는 것을 볼 수 있다. 또한 전자전 조사량 증가에 따라 저주파수 영역의 유전정점의 크기가 작아지지만, 0퍼크 낮은 온도 에서와 같이 경향이 나타났다.
인가전압 1500[mV], 온도 35[℃]인 경우 유전특성의 주파수 의존성을 나타낸 그림 6에서 인가전압 500[mV]인 경우보다 저주파수 영역에서 유전정점의 크기가 작아지며 피크는 나타나지 않을을 확인할 수 있다.

그림 6. 인가전압 1500[mV], 온도 35[℃]에서 유전
특성의 주파수 의존성
Fig. 6. Frequency dependence of dielectric characteristics in the applied voltage 1500[mV] at 35[℃]

이것은 인가전압이 높아질수록 유전정점의 크기가 오하리 작아지는 것은 Garton의 이론에 따라 인가전압의 -1.5등 배만큼 유전정점의 크기가 작아지는 것으로 이해할 수 있다.
인가전압 1500[mV]에서 온도가 80[℃]로 높아지면 그림 7에 나타난 바와 같이 전자전 조사량이 0.5[Mrad]인 시료에 대해 주파수 영역에서 새로운 피크가 나타날음을 확인할 수 있다. 이것은 전자전 조사에 의해 주파수의 일부 절단과 새로운 기초의 발생으로 인해 유전특성에 가까이COME 두 개의 피크가 나타나는 것으로 생각된다. 그리고 저주파수 영역에서는 증가온도가 높아질수록 (그림 4, 5, 6, 7) 유전정점의 크기가 작아지는 것을 볼 수 있는데, 이것은 온도증가에 따라 시료의 유동성이 증가하여 전도에 기여하는 Carrier의 밀도가 상대적으로 낮아져 전가전도에 기여하지 못하기 때문으로 생각된다.

그림 7. 인가전압 1500[mV], 온도 80[℃]에서 유전
특성의 주파수 의존성
Fig. 7. Frequency dependence of dielectric characteristics in the applied voltage 1500[mV] at 80[℃]

(2) 전압 의존성
인가전압 변화에 따른 유전특성의 변화를 조사하기 위하여 변압기유에 대해 국제 규격에 명시된 최고 온도 온도인 80[℃]에서 주파수 330[Hz], 1[kHz], 10[kHz]인 경우 유전특성의 전압 의존성을 각각 그림 8, 그림 9, 그림 10에 나타내었다.
그림 8에서 인가전압이 높아질수록 유전정점의 크기는 작아지는데, 이는 생성자나 이온의 기여에 따른 손실이 나타나는 주파수 영역에 인가전압이 높아
물론: 전자선 조사에 따른 변압기용의 전기적 특성——이용우, 조운천, 홍진웅

그림 9. 주파수 1[kHz]의 경우, 온도 80℃에서 유전특성의 전압 의존성
Fig. 9. Voltage dependence of dielectric characteristics in the frequency 1[kHz] at 80℃

그림 10. 주파수 10[kHz]의 경우, 온도 80℃에서 유전특성의 전압 의존성
Fig. 10. Voltage dependence of dielectric characteristics in the frequency 10[kHz] at 80℃

3.3 채적고유저항특성
점연율의 점연성을 간접적으로 평가하기 위해 채적 고유저항행을 사용하여 시료에 적류전압을 인가하고 일정시간(300[sec])이 지나서 전압 의존성을 측정하였다.

그림 11은 측정온도 80℃에서 채적고유저항의 전압의존성으로서 시료들은 전압이 음직인 채적 고유저항이 선형적으로 조금씩 증가하는 것을 볼 수 있으며 각 시료들의 채적 고유저항의 크기가 뚜렷하게 구분된다. 이것은 향상은 전도성 Carrier는 음직으로 높아졌으나 온도 증가와 함께 시료의 유효성도 증가하며 전역적으로 보면 전도성 Carrier의 밀도가 낮아져 전도에 기여하지 못함으로 전역적으로 증가하는 것으로 생각된다.

그림 11. 채적 고유저항의 전압 의존성 (80℃)
Fig. 11. Voltage dependence of volume resistivity (80℃)

그러나 전사선 조사된 시료는 가로는 발생하지 않았으나 불안정한 상태로 유지됨으로 인해 채적고유저항값이 원시료에 비해 1/10 이하로 되어 IEC 등의 국제규격에 온도 80℃에서 5 × 10^13 [Ω·cm] 이상이 되도록 요구하는바 그 규정에 미흡한 것으로 분석된다.
또한, 1(Mrad) 조사된 시료에 대한 제적 고유속성은 오하라 0.2(Mrad), 0.5(Mrad) 조사된 시료에 대한 제적 고유속성보다 크게 나타나 점차성이 더 우수한 바이는 적당한 전자선의 조사로 인해 안정적인 분자 구조적인 변화를 유발했기 때문으로 생각된다.

4. 결론

(1) 시료의 FT-IR Spectrum으로부터 전자선 조사의 증가에 따라 Carbonyl기여가 증가되며, 또한 원 시료에서 나타나는 희소계 확합들이 전자선 조사에 의해 없어짐을 확인할 수 있었다.

(2) 전자선의 적용에 있어서는 온도가 증가함에 따라 시료의 유동성 증가의 영향으로 손실의 크기가 작아지며, 조사량 0.5(Mrad)인 시료는 저전압, 저주파수 영역에서 큰 손실의 크기를 나타내었다. 고주파수 영역에서는 주요한 기여에 의한 손실로 생각되며 온도 외존성을 거의 없는 것으로 확인하였다.

(3) 인가진입 변화에 따른 유전특성은 저주파수 영역에서는 인가진입이 증가하면 인가진입의 -1.5승 배반을 감소하는 것으로 생각된다. 고주파수 영역의 유전손실은 인가진입이 높아지면 손실의 크기도 조절적으로 증가하는 것을 확인하였다.

(4) 전자선 조사된 시료의 제적 고유속성은 원 시료의 1/10로 감소하며, 조사된 시료중 1(Mrad)의 점차성이 가장 양호하였으나, 국계구역에 미치는 것으로 볼 수 있다.

※ 본 연구는 1996년 한국전력공사의 연구비 지원에 의해 수행되었음.

참고문헌


지식소개

이용우

조문천

홍진용