Pb(Mg\textsubscript{1/3}Nb\textsubscript{2/3})O\textsubscript{3}–BaTiO\textsubscript{3}–CaZrO\textsubscript{3} 세라믹의 유전특성에 관한 연구

A Study on the Dielectric Properties of the Pb(Mg\textsubscript{1/3}Nb\textsubscript{2/3})O\textsubscript{3}–BaTiO\textsubscript{3}–CaZrO\textsubscript{3} Ceramics

김수하', 이한성'', 배선기''
(Soo-Ha Kim, Han-Sung Lee, Seon-Gi Bae)

Abstract

In this paper, the dielectric properties of (0.8-x)Pb(Mg\textsubscript{1/3}Nb\textsubscript{2/3})O\textsubscript{3}-0.2BaTiO\textsubscript{3}-xCaZrO\textsubscript{3} (x=0.1, 0.15, 0.2, 0.25) ceramics were investigated. Specimens were prepared by the conventional mixed oxide method, and sintering temperature and time were 1000 to 1150°C, 2hr, respectively. The structural and dielectric properties with variation of sintering temperature and composition were investigated.

All the specimens sintered at 1150°C showed perovskite structure without pyrochlore phase. Dielectric constant was increased with increasing sintering temperature, 0.7PMN-0.2BT-0.1CZ specimen sintered at 1150°C for 2hr showed the highest value of 1043. With increasing the contents of C2 and frequency, dielectric constant was decreased, and which was decreased with increasing temperature from 30°C to 150°C.

Key words(중요용어): Dielectric constant(유전상수), Complex perovskite(복합페로브스카이트), Dielectric properties(유전특성), Relaxation time(환화시간), Saturated polarization(포화분극)

1. 서론

최근 국내외를 막론하고 핵산 산업의 발전을 위해서는 기존의 소재가 가지고 있는 성능이나 인식보다 더 우수한 특성을 지닌 신소재의 개발이 점점히 요구되고 있는 실정이다. 특히 전기·전자 부품 소재의 다변화에 따라 정해진, 고연합 저작료, 이동통신 고주파 회로 등에서 인가전력과 온도 및 고주파 대역에서의 전기적 특성이 안정된 세라믹 커페시터에 대한 수요가 급증하고 있으며, 최근 전자 장치는 고밀도 표면 실장 기술의 도입에 따라 소형, 경량화되는 추세이다. 따라서 전기·전자 부품 소자는 소형화·다양화·고주파화·고전압화·고성능화 및 고전력성이 동시에 요구되고 있다. 아울러 전자기기에서는 다기능화가 진행되고 있으며, 전기·전자 부품 소자들은 이러한 다양한 기능을 충족시키기 위한 전기적 특성이거나 물리적 특성이 해석도 요구되고 있다.

세라믹 커페시터에 대한 연구는 1920년대초에 시작되어 1945년에 높은 유전율을 가지는 BaTiO\textsubscript{3}가 개발되었으나 강화전장에 기인하여 적류 바이어스 인가시 정전용량이 현저히 감소하고 유전 손실이 증가하여 커페시터로서의 용용에는 많은 문제점이 따랐다.11 Pb(Mg\textsubscript{1/3}Nb\textsubscript{2/3})O\textsubscript{3} 세라믹은 1960년대초 G.Smilenskii 등26이 의해 체적으로 합성된 후, 높은 유전 상수와 낮은 소결 온도 등의 장점으로 인해 많은 연구가 이루어져 왔으며 M.Lejeune 등38은 저온에서 소결이 가능하고 높은 유전 상수를 갖는 Pb(Mg\textsubscript{1/3}Nb\textsubscript{2/3})O\textsubscript{3}-BaTiO\textsubscript{3} 세라믹에 대해 연구하는 등 제작조건, 물성평가·성능·생산성의 변화를 통해 낮은 소결 온도와 고전압용을 갖는 세라믹 용지에 대한 연구가 진행되고 있다.46 그러나 PMN-PT 조성 세라믹에서 PMN물질이 큰 영역에서는 일반 소성법으로 제작할 경우 유전특성을 저하시키는 pyrochlore...
상이 나타나기 때문에 그 제조여 어려움이 있다. 따라서 최근에는 PMN에대시 \(\text{MgO} \)와 \(\text{Nb}_{2} \text{O}_{5} \)를 먹반응시켜 \(\text{MgNb}_{2} \text{O}_{6} \)을 형성시킨 후 \(3\text{PbO} \cdot \text{MgNb}_{2} \text{O}_{6} \rightarrow 3\text{Pb} \cdot \text{Mg}_{2} \text{Nb}_{2} \text{O}_{9} \)와 같은 고상 반응에 의하여 PMN이 직접 형성되도록 하는 Columbite approach라는 개념을 제안 방법이 보고되고 있다.\(^{9}\)

따라서 본 연구에서는 유전 특성이 우수한 \(\text{Pb} \cdot \text{Mg}_{12} \text{Nb}_{2} \text{O}_{20} \) 세라믹은 일반 산물 환합법으로 제작할 경우 \(\text{MgO} \)의 낮은 활성도 (reactivity)로 인하여 저온에서 \(\text{PbO} \)와 \(\text{Nb}_{2} \text{O}_{5} \)가 먼저 반응하여 pyrochlore상을 형성하며, 이로 인하여 제조작업에 어려움이 있다. 이는 반응 초기 단계에서 pyrochlore상이 형성되고 이 pyrochlore상이 perovskite상으로의 전환이 매우 느리기 때문에 낮은 온도에서 하소를 할 필요가 있다.\(^{9}\)

따라서 본 연구에서는 1남 \(\text{MgO} \cdot \text{Nb}_{2} \text{O}_{5} \)을 전장한 후 아세톤을 분산매로 하여 용비로 5시간 혼합 분쇄하였으며 100℃에서 10시간 동안 건조하였다. 건조된 시료를 알루미나 도가니에 넣어 850℃에서 2시간 1차 하소한 후, \(\text{PbO} \), \(\text{BaCO}_{3} \), \(\text{TiO}_{2} \), \(\text{CaCO}_{3} \), \(\text{ZrO}_{2} \)의 시료를 시험의 조성 (0.8-x)\(\text{Pb} \cdot \text{Mg}_{12} \text{Nb}_{2} \text{O}_{20} \cdot 0.2\text{BaTiO}_{3} \cdot x\text{CaZr}_{2} \text{O}_{5} \) (x=0.0, 0.15, 0.2, 0.25)에 따라 전장한 후 암석을 분산매로 하여 용비로 24시간 다시 혼합 분쇄하였다. 분쇄된 시료를 100℃에서 10시간 건조한 후 850℃에서 2시간 하소하였다. 200mesh로 선별 하였고, 2wt%의 PVA용액을 점차하여 \(\phi \) 12mm의 원형형 금형에 1.5 g을 넣고 1 ton/cm\(^2\)의 압력으로 성형한 후 3중 도가니 구조를 사용하여 1000~1150℃로 소결온도를 달리하여 2시간 동안 소결하였다. 이 때 전기로의 온도 상승은 300℃/hr로 하였 다.

소결된 시험은 0.8 m의 두께로 연마하여 초음파 세척을 한 후 시험의 양면에 실크 스크린법으로 실험하였다.

2. 실험

2.1 시험의 제작

그림 1은 PMN-BT-CZ 시험의 제조 과정을 나타낸 것이다. \(\text{PbO} \)와 \(\text{Nb}_{2} \text{O}_{5} \)를 포함하는 \(\text{Pb} \cdot \text{Mg}_{12} \text{Nb}_{2} \text{O}_{20} \) 세라믹은 일반 산물 환합법으로 제작할 경우 \(\text{MgO} \)의 낮은 활성도 (reactivity)로 인하여 저온에서 \(\text{PbO} \)와 \(\text{Nb}_{2} \text{O}_{5} \)가 먼저 반응하여 pyrochlore상을 형성함으로써 제조작업에 어려움이 있다. 이는 반응 초기 단계에서 pyrochlore상이 형성되고 이 pyrochlore상이 perovskite상으로의 전환이 매우 느리기 때문에 낮은 온도에서 하소를 할 필요가 있다.\(^{9}\)

따라서 본 연구에서는 1남 \(\text{MgO} \cdot \text{Nb}_{2} \text{O}_{5} \)을 전장한 후 아세톤을 분산매로 하여 용비로 5시간 혼합 분쇄하였으며 100℃에서 10시간 동안 건조하였다. 건조된 시료를 알루미나 도가니에 넣어 850℃에서 2시간 1차 하소한 후, \(\text{PbO} \), \(\text{BaCO}_{3} \), \(\text{TiO}_{2} \), \(\text{CaCO}_{3} \), \(\text{ZrO}_{2} \)의 시료를 시험의 조성 (0.8-x)\(\text{Pb} \cdot \text{Mg}_{12} \text{Nb}_{2} \text{O}_{20} \cdot 0.2\text{BaTiO}_{3} \cdot x\text{CaZr}_{2} \text{O}_{5} \) (x=0.0, 0.15, 0.2, 0.25)에 따라 전장한 후 암석을 분산매로 하여 용비로 24시간 다시 혼합 분쇄하였다. 분쇄된 시료를 100℃에서 10시간 건조한 후 850℃에서 2시간 하소하였다. 200mesh로 선별 하였고, 2wt%의 PVA용액을 점차하여 \(\phi \) 12mm의 원형형 금형에 1.5 g을 넣고 1 ton/cm\(^2\)의 압력으로 성형한 후 3중 도가니 구조를 사용하여 1000~1150℃로 소결온도를 달리하여 2시간 동안 소결하였다. 이 때 전기로의 온도 상승은 300℃/hr로 하였 다.

Weighing	\(\text{MgO} \cdot \text{Nb}_{2} \text{O}_{5} \cdot x \) in acetone, 유방, 4hr
Mixing	
Drying	at 100℃, 10hr
Calcinging	at 950℃, 2hr
Weighing	
Mixing	\(\text{PbO} \cdot \text{BaCO}_{3} \cdot \text{TiO}_{2} \cdot \text{CaCO}_{3} \cdot \text{ZrO}_{2} \) in acetone, Ball-mill, 24hr
Drying	at 100℃, 10hr
Calcinging	at 850℃, 2hr
Sieving	200 mesh
Binder	2wt%PVA
Pressing	\(\phi 12[\text{mm}] \), 1ton/cm\(^2\)
Sintering	at 1000~1150℃, 2hr
Polishing	
Electroding	silver painting(실크 스크린법) 400℃, 30min

Measurement

2.2 전기적 특성 측정

조성 및 소결온도에 따른 소결성 및 2차상의 존재를 관찰하기 위해 표면의 2구를 20°~60° 사이에서 X선 회전분석을 하였다. X선 사차의 인가한 전압 및 전류는 40 kV, 20 mA이며, 스테로는 0.01 deg로 Fig. 1. Processing diagram of the specimen.
하였다. 시편의 소결 온도에 따른 상온에서의 유전 상수 및 유전 손실은 LCR-meter (ANDO, AG-4311B)를 사용하여 1 kHz에서의 케퍼시턴스 C와 전도 전류에 의한 손실을 나타내는 유전 손실 D를 측정하여 식 (1)에 의해 유전 상수를 계산하였다.

\[\varepsilon_r = \frac{Cd}{\varepsilon_0 S} \]

여기서
\[C \]: 정전 용량 \([\text{F}]\)
\[S \]: 전극의 면적 \([\text{m}^2]\)
\[d \]: 시편의 두께 \([\text{m}]\)
\[\varepsilon_0 \]: 진공중의 유전율 \([\text{F/m}]\)

또한 온도 변화에 따른 정전 용량과 유전 손실의 측정은 그림 2와 같은 유전 특성 측정 장치를 이용하였다. 상온이 온도는 30°C에서 150°C까지 서서히 온도를 변화시킴으로서 측정한 유전 상수의 변화로부터 관찰하였으며 주파수 변화에 대한 정전 용량의 안정성을 조사하기 위하여 주파수를 100 Hz~100 kHz로 변화시키 정전 용량을 측정한 후 식(1)에 의하여 주파수 변화에 따른 유전 상수를 계산하였다.

![그림 2. 유전 특성 측정 장치](image)

Fig. 2. Experimental apparatus for measuring dielectric properties

3. 결과 및 고찰

그림 3은 0.7PMN-0.2BT-0.1CZ 시편의 소결 온도에 따른 X-선 회절 모양을 나타낸 것이다. 시편의 소결온도가 1100°C이하에서는 낮은 소결온도에 기인하여 소량의 pyrochlore상과 미반응의 PbO가 관찰되었으나 1150°C에서는 이러한 2가상이 존재하지 않는 완전한 perovskite 구조가 형성되었음을 X-선회절분석 결과로부터 관찰할 수 있었다.

그림 4와 5는 소결온도에 조성변화에 따른 PMN-BT-CZ 시편의 유전상수와 유전손실을 나타낸 것이다.

![그림 3. 소결온도에 따른 0.7PMN-0.2BT-0.1CZ 시편의 X-선 회절모양](image)

Fig. 3. X-ray diffraction patterns of 0.7PMN-0.2BT-0.1CZ specimens with sintering temperature.

![그림 4. 소결온도에 따른 PMN-BT-CZ 시편의 유전상수(at 1 kHz, 30°C)](image)

Fig. 4. Dielectric constant of the PMN-BT-CZ specimens with sintering temperature(at 1 kHz, 30°C).
시편의 유전상수는 PMN의 고용량 및 소결온도가 증가함수록 pyrochlore성 및 미세용 물질의 감소와 고상전도에 의한 강유전성 perovskite성의 증가로 인 하여증가하였으며, 1150℃에서 소결한 0.7PMN-0.2
BT-0.1CZ시편의 경우 1043의 최대값을 나타내었다.
유전손실은 각각성 모두 소결온도에 따라 약간의 차
이는 있으나 3.5%이하의 양호한 값을 나타내었으며,
특히 1100℃에서 소결한 0.7PMN-0.2BT-0.1CZ 시편
의 경우 1.2%로 최소값을 나타내었다.

![Dielectric Loss vs Sintering Temperature](image)

그림 5. 소결온도에 따른 PMN-BT-CZ 시편의
유전손실(at 1 kHz, 30℃)

Fig. 5. Dielectric loss of the PMN-BT-CZ specimens with sintering temperature (at 1 kHz, 30℃)

그림 6은 주파수 변화에 따른 PMN-BT-CZ시편
의 유전상수를 나타낸 것이다.
주파수가 100 Hz에서 100 kHz를 증가함에 따라
유전상수는 다소 감소하였다. 일반적으로 본극은 전
계인가 또는 제거후 자발분극에 대한 환화시간
(relaxation time)을 가지며 시편에 전기가가 어떠한
시간이 환화시간 보다 길 때에는 자발분극(saturated
polarization)이 일어나지만 환화시간에 접근하면 본
극은 점차 일어나지 어렵게 된다. ①
따라서 인가 주파수가 증가함에 따라 결정 격자
내의 자발분극의 감소에 기인하여 유전상수는 감소
하게 된다. 1 kHz에서의 유전상수의 감소는 시편 내
부의 공간전하 분극의 역제에 기인한 것으로 사료된
다. 따라서 주파수 변화에 따른 유전특성은 크게 변
화하지 않는 비교적 양호한 안정된 주파수 의존성을
나타내었다.

![Dielectric Constant vs Frequency](image)

그림 6. 주파수 변화에 따른 PMN-BT-CZ 시편의
유전상수

Fig. 6. Dielectric constant of the PMN-BT-CZ ceramics with frequency.

그림 7-10은 시편의 온도변화에 따른 유전상수와
온도 변화에 따른 유전상수와 유전손실

영상 5. 0.65PMN-0.2BT-0.15CZ의 온도 변화에 따른 유전상수와 유전손실

영상 7. 0.7PMN-0.2BT-0.1CZ의 온도 변화에 따른 유전상수와 유전손실

영상 8. 0.65PMN-0.2BT-0.15CZ의 온도 변화에 따른 유전상수와 유전손실

영상 9. 0.6PMN-0.2BT-0.2CZ의 온도 변화에 따른 유전상수와 유전손실

Fig. 7. Dielectric constant and dielectric loss with temperature in the 0.7PMN-0.2BT-0.1CZ specimens.

Fig. 8. Dielectric constant and dielectric loss with temperature in the 0.65PMN-0.2BT-0.15CZ specimens.

Fig. 9. Dielectric constant and dielectric loss with temperature in the 0.6PMN-0.2BT-0.2CZ specimens.
학 온도 의존성을 나타내었으며, 이러한 현상은
복합 폐크로스카이트 결정구조에서 B-site에 각 이
온의 치환이 불규칙적으로 발생함에 따른 결정구조
및 조성의 불균일성이 기인한 확산형 상관에 의한
것으로 생각된다. 그러나 유전손실은 온도변화에 따
라 다소 불안정한 변화를 보이고 있으며, 이에 대한
계속적인 연구가 필요할 것으로 사료된다.

2. 유전상수는 1150°C에서 채결한 0.7PMN·0.2
BT·0.1CZ시편의 경우 상온에서 1043으로 최대값
을 나타내었으며, 유전손실은 1100°C에서 채결한
0.7PMN·0.2BT·0.1CZ 시편에서 1.2 %로 최소값
을 나타내었다.

3. CaZrO3의 첨가량이 증가함에 따라 유전상수는 감
소하는 경향을 나타내었지만, 주파수 변화에 따
른 안정성이 향상되었다.

4. 온도변화에 따른 유전상수는 시편의 조성 변화에
는 큰 영향을 받지 않았으며, 비교적 안정한 변
화를 보이는 양호한 온도특성을 나타내었다. 특
히 1100°C에서 채결한 0.55PMN·0.3BT·0.25CZ
시편의 경우 0.71°C로 변화율이 가장 적게 나타
났다.

이상의 결과로 보아 PMN-세라믹의 BT와 CZ를
고용시키면서 온도와 주파수변화에 대한 안정성을
향상되었으나, 유전을 증가하는 영향을 미치지 못한
것으로 나타났다. 따라서 유전을 증가 및 안정성 향
상을 위한 조성조절과 첨가물에 대한 연구가 더
이어져 진다면 고유전율 세라믹 페스처의 제작이
가능하려고 생각한다.

4. 결론

본 연구에서는 (0.8-x) Pb(Mg0.33Nb2/3O3)0.2Ba
TiO3·xCaZrO3 (x=0.1, 0.15, 0.2, 0.25)세라믹을 일반
소성법으로 제작한 후 채결온도 및 조성변화에 따른
구조적, 유전적 특성을 조사한 결과 다음과 같은 결
론을 얻었다.

1. X-선 회절실험 결과 1150°C의 채결 온도에서
pyrochlore상 및 미반응 물질이 존재하지 않는
완전한 perovskite 구조의 시편이 제작되었다.
8. 유남산, 유기현, 이성갑, 이영희, "Pb(Mg_{1/3}Nb_{2/3}) O_3-PbTiO_3-Pb(Ni_{1/2}W_{1/2})O_3 세라믹의 음전 특성에 관한 연구", 대한전기학회지, Vol. 40, No. 9, pp. 893–899, 1991.
9. 김세익, 정장호, 이성갑, 배선기, 이영희, "(Sr_{0.5} Pb_{0.5}Ba_{0.5})TiO_3 세라믹 유전특성에 관한 연구", 한국전기전지학회지, Vol. 8, No. 3, pp. 267–269, 1995.

저사소개

김수하
1965년 5월 29일생, 1982년 숭실대학교 공대 전기공학과 졸업. 1997년 한화 인천대학교 대학원 전기공학과 석사과정, 현직 한국전력공사 서울자재관리사업소 정비 2과장.

배선기

이성철