순서와 위상구조의 관계

  • Published : 1997.06.01

Abstract

This paper deals with the relationship between the order structure and topological structure in the historical point of view. We first investigate how the order structure has developed along with the set theory and logic in the second half of the nineteenth century. After the general topology has emerged in the beginning of the twentieth century, two disciplines of the order theory and topology give each other a great deal of effect for their development via various dualities, compactifications by maximal filter spaces and Alexandroff's specialization order, which form eventually a fundamental setting for the development of the category theory or functor theory.

Keywords

References

  1. Abstract and Concrete Categories J. Adamek;H. herrlich;G. E. Strecker
  2. Comptes Rendus Acad. Sci. v.200 Sur les espaces discrets P. Alexandroff
  3. Mat. Sbornik v.2 Discrete Raume P. Alexandroff
  4. Topologie I P. Alexandroff;H. Hopf
  5. Distributive Lattices R. Balbes;P. Dwinger
  6. Arch Math v.18 Categorical characterization of the MacNeille completion B. Banaschewski;G. Bruns
  7. J. Reine Angew. Math v.232 Injective hulls in the category of distributive lattices B. Banaschewski;G. Bruns
  8. Treillis locaux et paratopologies, Sem. Ehresmann, 1re annee J. Benabou
  9. The Mathematical Analysis of Logic G. Boole
  10. An Investigation of the Laws of Thought G. Boole
  11. Bull. Amer. Math. Soc. v.20 Intuitionism and formalism L. E. J. Brouwer
  12. Math. Ann v.93 Zur Begrundung des intuitionistischen Mathematik L. E. J. Brouwer
  13. Math. Ann v.95 Zur Begrundung des intuitionistischen Mathematik L. E. J. Brouwer
  14. Math. Ann v.96 Zur Begrundung des intuitionistischen Mathematik L. E. J. Brouwer
  15. Portugal Math v.11 Representation of complete lattices by sets J. R. Buchi
  16. Math. Ann v.46 Beitrage zur Begrundung der transfiniten Mengenlehre. I G. Cantor
  17. Hausdorff Compactifications R. E. Chandler
  18. Stetigkeit und Irrationale Zahlen R. Dedekind
  19. Ver. Deutscher Natur. und Arzte Uber Zerlegungen von Zahlen durch ihre grossten gemeinsamen Teiler R. Dedekind
  20. Math. Ann v.53 Uber die von drei Moduln erzeugte Dualgruppe R. Dedekind
  21. Jber. Deutsch. Math-Verein v.60 Gattungen von lokalen Strukturen C. Ehresmann
  22. Cir. Math Palermo. Rend v.22 Sur quelques points du calcul fontionnel M. Frechet
  23. A Compendium of Continuous Lattices G. Gierz;K. H. Hofmann;K. Keimel;J. D. Lawson;M. Mislove;D. S. Scott
  24. Grundzuge der Mengenlehre F. Hausdorff
  25. Handbook of the History of General Topology v.1 A Categorical Topology H. Herrlich;G. E. Strecker
  26. Akad Wiss., Phys-math Klasse Die formalen Reglen der intuitionistischen Logik A. Heyting
  27. Trans. Amer. Math. Soc. v.5 Sets of independent postulates for the algebra of logic E. V. Huntington
  28. Fund. Math v.113 Tychonoff's theorem without the axiom of choice P. T. Johnstone
  29. Stone Spaces P. T. Johnstone
  30. Opuscules et fragments inedits G. W. Leibniz;L. Courant(ed)
  31. Trans. Amer. Math. Soc. v.42 Partially ordered sets H. M. MacNeille
  32. Amer. J. Math v.3 On the algebra of logic C. S. Peirce
  33. Extensions and Absolutes of Hausdorff Spaces J. R. Porter;R. G. Woods
  34. Amer. J. Math v.3 Introduction to a general theory of elementary propositions E. L. Post
  35. Vorlesungen uber die Algebra der logik v.1 E. Schroder
  36. Proc. Nat. Acad. Sci. U. S. A v.20 Subsumption of the theory of Boolean algebras under the theory of rings M. H. Stone
  37. Trans. Amer. Math. Soc. v.40 The theory of representations for Boolean algebras M. H. Stone
  38. Trans. Amer. Math. Soc. v.41 Applications of the theory of Boolean rings to general topology M. H. Stone
  39. Bull. Amer. Math. Soc. v.44 The representation of Boolean algebras M. H. Stone
  40. Topology via ogic S. Vickers
  41. Ann. math v.39 Lattices and topological spaces H. Wallman
  42. A Treatise on Universal Algebra with Applications v.1 A. N. Whitehead
  43. Historia Math v.9 no.1 선택공리와 19세기 수학 홍성사;홍영희
  44. Historia Math v.9 no.2 Zermelo이후의 선택공리 홍성사;홍영희