A Note on Derivations in prime rings

  • 발행 : 1997.12.01

초록

Derivation은 Lie group, Lie ring 그리고 Lie Algebra에서 정의되어 사용되며 발전하였으며 ring에서 일반화 되었다. 역시 prime ring에서 연구되어지는 derivation의 성질들은 prime near-ring에서 일반화 시키려고 하고 있다. 1957년 E. Posner는 prime ring에서 두 개의 derivation의 곱(함수합성)이 derivation이면 이들중 하나의 derivation이 0임을 밝혔다. 본 논문에서는 prime ring에서 derivation이 연구된 역사적인 배경을 소개하고 몇가지 성질을 찾는다. 즉, D. F를 prime ring R의 derivation들이라 할 때 정수 $n{\ge}1$에 대하여 $DF^n$=0이면 D=0이거나 또는 $F^{3n-1}$=0이고, $D^nF$=0이면 $D^{9n-7}$=0 이거나 또는 $F^2$=0 이다.

키워드

참고문헌

  1. J. Algebra v.71 Lie ideals and derivations of rings J. Bergen;I. N. Herstein;J. W. Kerr
  2. Bollettino U.M.I v.6 Lie ideal and nil derivations L. Carini;A. Giambruno
  3. Pro. Amer. Math. Soc. v.107 no.1 an nilpotent derivations of prime rings C. L. Chuang
  4. Canad. Math Bull v.26 no.3 Nilpotent of derivations L.O. Chung;J. Luh
  5. Pro. Amer. Math. Soc v.90 Nilpotent of derivations, on an ideall L.O. Chung;J. Luh
  6. Pro. Amer. Math. Soc v.91 no.3 Nilpotent of derivations II L.O. Chung;J. Luh
  7. J. algebra v.83 On the centrallizers of ideals and nil derivations B. Felzenszwalb;C. Lanski
  8. Rend. Circ. Math Palermo v.30 Derivations with nilpotent values A. Giambrno;I. N. Herstein
  9. J. Math v.23 no.4 On derivations with powers vaanishing on one-sided ideals chinese P. Grzeszczuk
  10. Canad. Math. Bull v.21 no.3 A note on derivations I. N. Herstein
  11. Canad. Math. Bull v.22 no.4 A note on derivations II I. N. Herstein
  12. J. Algebra v.60 Center like elements in prime rings I. N. Herstein
  13. Ring with Involution I. N. Herstein
  14. Topics in Ring Theory I.N. Herstein
  15. Algebra and Logic v.17 Differential identities of prime rings V. K. Kharchenko
  16. Comm. in Algebra v.22 no.4 Derivations with nilpotent values on left ideals C. Lanski
  17. Pro. Amer. Math. Sec. v.108 no.1 derivations with nilpotent values on Lie ideals C. Lanski
  18. Amer. Math. Sec. v.98 no.1 Note on nilpotent derivations P. H. Lee;T. K. Lee
  19. Chiness J. of Math v.9 no.2 On derivations of prime rings P. H. Lee;T. K. Lee
  20. Pacific J. Math v.104 On the iterates of derivations of prime rings W. S. Martindale;C. R. Miers
  21. Pro. Amer. Math. Soc v.8 Derivations in prime rings E. C. osnes
  22. Canad. Math. Bull v.39 no.3 Derivations of higher orrder in prime rings Y. YE;J. Luh