A Note on Derivations in prime rings*

한양대학교 이과대학 왕문옥
한양대학교 이과대학 황신철

Abstract

Derivation은 Lie group, Lie ring 그리고 Lie Algebra에서 정의되어 사용되며 발전하였으며 ring에서 일반화 되었다. 역시 prime ring에서 연구되어지는 derivation의 성질들은 prime near-ring에서 일반화 시켜놓고 하고 있다. 1957년 E. Posner는 prime ring에서 두 개의 derivation의 곱(항수합성)이 derivation이면 이들 중 하나의 derivation이 0임을 밝혔다. 본 논문에서는 prime ring에서 derivation이 연구된 역사적인 배경을 소개하고 몇 가지 성질을 찾는다. 즉, D, F를 prime ring R의 derivation들이라 할 때 경우 \(n \geq 1 \)에 대하여 \(DF^n = 0 \)이면 \(D=0 \)이거나 또는 \(F^{3n-1} = 0 \)이고, \(D^nF = 0 \)이면 \(D^{3n-1} = 0 \)이거나 또는 \(F^2 = 0 \)이다.

0. Introduction and Historical Background of Derivations

Let \(R \) be a ring. An additive map \(D : R \to R \) is said to be derivation of \(R \) if \(D(xy) = D(x)y + xD(y) \) for all \(x, y \in R \). For example, if \(R = \mathbb{R}[x] \) where \(\mathbb{R} \) is the set of real numbers, then the ordinary derivative \(d/dx \) of elementary calculus is a derivation. Our next example of a derivation is interesting only when \(R \) is noncommutative. Fix an element \(a \in R \) and define the map \(D_a = D_a : R \to R \) by \(D(x) = ax - xa \) for \(x \in R \). Then \(D \) is a derivation and it is called the inner derivation. The set \(\text{Der}(R) \) of all derivations of \(R \) is closed under addition. In general, however \(\text{Der}(R) \) is not closed under multiplication(function composition). If \(D, F \in \text{Der}(R) \), then the map \([D,F] = DF - FD \) is also a derivation. Thus \(\text{Der}(R) \) becomes a Lie ring.

* 본 논문은 1997년 한양대학교 교내연구비 지원에 의하여 수행되었음
Suppose F is a field and R is a ring that happens to be an F-algebra. A derivation $D \in \text{Der}(R)$ is said to be an F-derivation if D is an F-linear operator on R. For example, the calculus derivative d/dx is an R-derivation on $R[x]$. Let $R=F[x]$. Then there exists an unique F-derivation D of R with $D(x)=1$ and thus we have $D\left(\sum_{i=0}^{n}a_{i}X^{i}\right) = \sum_{i=0}^{n}ia_{i}X^{i-1}$ where $a_{i}\in F$ for $i=0,1, \ldots, n$. In this case, D is called formal differentiation.

Let R be a prime ring (for some $a,b \in R$, $aR+b = 0$ implies either $a=0$ or $b=0$). In 1979, I.N. Herstein proved that if D is an inner derivation of R satisfying $D(x)^{n}=0$ for all $x \in R$ and n a fixed integer, then $D=0[12]$. This result was extended to arbitrary derivations in semiprime ring[8]. In 1983 B. Feitenswalt and C. Lanski considered derivations satisfying $D(x)^{n}=0$ for all $x \in I$, an ideal of R and proved that $D(1)=0$ when R has no nilpotent right ideal[7]. Using the general approach in [7], in 1985, L. Carin and A. Giambruno study the situation when $D(x)^{n}=0$ for all $x \in V$, a Lie ideal of R[2]. They prove first that $D(v)=0$ when $\text{char}R \neq 2$ and R contains no nilpotent right ideal, and then obtain the same conclusion when $n(x)=n$ is fixed and R is a 2-torsion free semiprime ring. In 1990, C. Lanski proved that if R contains no nilpotent right ideal, V is a non commutative Lie ideal of R and D is nilpotent derivation on V, then $D=0[17]$. In 1992, he considered derivations which are nilpotent on certain subsets of prime rings, Lie ideals, one-sided ideals and when a given ring has an involution on the sets of symmetric or skew symmetric elements. Combining the results and ideals of V.K. Kharchenko[1978][15] and W.S. Martindale and C.R. Miers[1983] in [20] he proved that (under some necessary assumption an characteristic typical for derivations) derivations become inner when extended to the Martindale quotient ring and are adjoint to nilpotent elements. Also, in 1984, L.O. Chung and J. Luh proved that if I is its two-sided ideal and D is a derivations of R such that $D^{n}(I)=0$, then $D^{n}(R)=0[5]$. In 1994, C. Lanski proved that D is a non-zero derivation of R, L a non-zero left ideal of R, and $n \geq 1$ is a fixed integer so that $D(x)=0$ for all $x \in L$, then $LD(L)=0[16]$.

On the other hand, in 1957, E. Posner proved that if the product of two derivations of R with characteristics not 2, is a derivation, then one of these two derivation must be zero[21]. In particular, if D is a derivation of R and $D^{2}=0$ then $D=0$. In 1983, L.O. Chung and J. Luh proved that if D is a derivation of 2-torsion free semiprime ring and $D^{2n}=0$ where n is a positive integer, then $D^{2n-1}=[4]$. Recently Chung and Luh proved that if D is a derivation of R with characteristics not 2 and $D^{2n}=0$ then
The index of a nilpotent derivation of a prime ring is necessarily odd. Also, in 1996, Y. Ye and J. Luh proved that if \(D^{2n} \) is a derivation of \(R \) then \(D^{2n-1} = 0 \)[22].

In this paper, we prove that if for a prime ring with no characteristic restriction, \(D \) and \(F \) are derivations of \(R \) and \(DF^n = 0 \) for an integer \(n > 1 \), then either \(D = 0 \) and \(F^{3n-1} = 0 \) and if \(D^mF = 0 \) for an integer \(m > 1 \), then either \(D^{3m-7} = 0 \) or \(F^2 = 0 \).

2. Properties of derivations

Lemma 1. Let \(D \) be a derivation of a prime ring \(R \) and let \(\alpha \) be an element of \(R \). If \(D(x)\alpha = 0 \) for all \(x \in R \) then either \(D = 0 \) or \(\alpha = 0 \).

proof: For all \(x, y \in R \), we have
\[
0 = D(xy)\alpha = D(x)y\alpha + xD(y)\alpha = D(x)y\alpha
\]
that is, \(D(x)R\alpha = 0 \). Hence since \(R \) is a prime ring, either \(D = 0 \) or \(\alpha = 0 \).

Lemma 2. Let \(D \) and \(F \) be derivations of a prime ring \(R \). If \(DF = 0 \), then either \(D = 0 \) or \(F^2 = 0 \).

proof: For all \(x, y \in R \) we have
\[
0 = DF(xy) = D(x)F(y) + F(x)D(y)
\]
Replace \(y \) by \(F(y) \), we get
\[
D(x)F^2(y) = 0
\]
Hence by Lemma 1, either \(D = 0 \) or \(F^2 = 0 \).

Theorem 3. Let \(D \) and \(F \) be derivations of a prime ring \(R \). If for an integer \(n > 1 \), \(DF^n = 0 \) then either \(D = 0 \) or \(F^{3n-1} = 0 \).

proof. Since for all \(x, y \in R \) \(DF^n(xy) = 0 \) Using the Leibniz' rule we have
\[
\sum_{i=0}^{n} \binom{n}{i} (DF^{n-i}(x)F^i(y) + F^{n-i}(x)DF^i(y)) = 0
\]
(1)

Replace \(x \) by \(F^{n-1}(x) \) and \(y \) by \(F^n(y) \) in (1). We get
\[
D^{n-1}(x) F^{2n}(y) = 0
\]
(2)

Replace \(x \) by \(F^{n-2}(x) \) and \(y \) by \(F^{n+1}(y) \) in (1) and using (2). We obtain
\[
DF^{n-2}(x) F^{2n-1}(y) = 0
\]
(3)
Continuing this process we have
\[D(x) F^{3n-1}(y) = 0 \]
That is, for all \(x, y \in R \) \(D(x)F^{3n-1}(y) = 0 \)
Hence by Lemma 1, either \(D = 0 \) or \(F^{3n-1} = 0 \)

Theorem 4. Let \(D \) and \(F \) be derivations of a prime ring \(R \). If for an integer \(m \geq 1 \)
\(D^m F = 0 \) then \(D^{9m-7} = 0 \) or \(F^2 = 0 \)

proof. Since \([D, F] = DF - FD \) is a derivation, \([D, [D, F]] = D^2F - 2DFD + FD^2 \) is a
derivation and also \(D^5F = 3D^3FD + 3DFD^2 - FD^3 \) is a derivation.
Continuing,
\[\sum_{i=0}^{2m-1} \binom{2m-1}{i}(-1)^i D^{2m-1-i}FD^i \]
is a derivation.

Using the fact that \(D^m F = 0 \), \(\sum_{i=0}^{2m-1} \binom{2m-1}{i}(-1)^i D^{2m-1-i}FD^i \) \(F = 0 \)
Applying Lemma 2, we have that either \(F^2 = 0 \) or
\[\sum_{i=m}^{2m-1} \binom{2m-1}{i}(-1)^i D^{2m-1-i}FD^i = 0 \quad (4) \]
If \(F^2 \neq 0 \) then premultiplying (4) by \(D^{m-1} \), we get
\[D^{m-1} FD^{2m-1} = 0 \quad (5) \]
and premultiplying (4) by \(D^{m-2} \), we obtain
\[(2m-1)D^{m-1}FD^{2m-2} - D^{m-1}FD^{2m-1} = 0 \]
and
\[((2m-1)D^{m-2}FD^{2m-2} - D^{m-2}FD^{2m-1})D = 0. \]
Using (5) we get
\[D^{m-2} FD^{2n} = 0 \quad (6) \]
Premultiplying (4) by \(D^{m-3} \), we have
\[\left(\frac{2m-1}{2m-3} \right)D^{m-3}FD^{2m-3} + (2m-1)D^{m-2}FD^{2m-2} - D^{m-1}FD^{2m-3} = 0, \]
and
\[\left(\frac{2m-1}{2m-3} \right)D^{m-3}FD^{2m-1} + (2m-1)D^{m-2}FD^{2m-2} - D^{m-1}FD^{2m-3} \] \(D^2 = 0. \)

Using (5) and (6), \(D^{m-3}FD^{2m+1} = 0 \)
Continuing, we have \(FD^{3m-2} = 0 \)
Hence, since \(F \neq 0 \), by Theorem 3, \(D^{3m-7} = 0. \)
참고문헌

