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ABSTRACT

In a flexible manufacturing system, a cell controller is able to identify and evaluate a
number of alternative decisions to meet the objectives set by the factory level controller. In
this paper, a Petri net-based cell controller is presented to accomplish this task. A static
model is developed by using the Integrated Computer Aided Definition(IDEF0) method to
represent clear functional relationships among the objects of the system. Based on the static
model, two Petri net models are developed for the physical part flow and for the
information flow. Multiple decision alternatives are generated from the physical part flow
model and are synchromized with the information flow model for execution of the selected
alternative.

1. INTRODUCTION

A flexible manufacturing cell is a single part of a Flexible Manufacturing
System (FMS) integrated with material handling devices and with numerically
controlled machine tools. It simultaneously processes a product mix of a variety
of part types. Functionally, the cell controller is responsible for the control of
the machines and for the routing of the workpieces within the cell. The
flexibility requirements in manufacturing small batches with a rapidly varying
product mix have stressed the contribution of the features of concurrency and
synchronization in the overall performance of the process [2]. By introducing
these features, flexible manufacturing cells pose new directions in decision
making and control of manufacturing systems.
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The large number of variables characterizing the decision process in an
FMS environment and the intricate nature of the mutual effects of the decision
process requires a hierarchical level of decision making [1]. Although several
hierarchical control and scheduling techniques have been proposed, very few
define in detail the decision making and control processes at the cell level.

The main objective of this paper is to develop an efficient decision
structure and control mechanism for real time implementation of asynchronous
concurrent activities of an FMS at the cell level. The problem considered
focuses the general context of discrete manufacturing confining to the cell’s
operations and its related information flow, primarily pointing towards a
product mix of different part types.

2. BACKGROUND

Several researchers have pioneered in the design of cell controllers(e.g. TU and
Sorgen[14], O’Grady et al.[l11], Lin and Solberg9], and Favrel et al.[7].) Few
attempts have been done to integrate the physical and informational flows in
an FMS(e.g. Boucher and Jafari[3]). In a flexible manufacturing environment, all
manufacturing functions are automated to a high degree to perform operations
effectively and efficiently in each cell. But automation requires a greater
flexibility, which implies a greater complexity in the control of the
manufacturing functions. Since the aim is to develop a cell controller in a
flexible manufacturing environment, complexity becomes an inherent fact. In cell
control operations complexities arise both from the physical part flow and the
information flow modules. Consequently, cell controller design will require a
simultaneous evolution of transactions with a considerable amount of parallelism
and synchronization. This stresses the need for a comprehensive tool for
efficient modelling of a cell controller. Petri nets being an excellent graphical
modelling tool, supported by a well developed mathematical theory, is thought
to be relevant for the cell controller design. This dynamic modelling technique
will be supported by the IDEF0 technique(discussed in section 3). Moreover, a
Petri net possesses many advantages as a dynamic modelling tool as is known
from the literature and from applications in various industries. Some of the
advantages of using Petri nets in the design of cell controllers are discussed
below.

The FMS can be described in a graphical form allowing an easy
visualization and communication of complex interactions between different
components. Petri net based models also show those states of the system where
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contention can occur between activities which share some resources and where
control may be exercised. An important feature is that Petri net based models
are executable, i.e. simulation code can be generated automatically from the net
specification. Performance measures can be obtained by direct simulation of the
net, without the need to write additional software. This feature is particularly
attractive when it is necessary to emulate the behavior of the system [2].
Moreover, the system and its Petri net based models can be validated by using
logical and mathematical properties.

A Petri net can be synthesized using both bottom-up and top-down
approaches. Hence, it is possible to design a system, whose behavior is either
known or easily verifiable, in a systematical way [16].

Petri nets can model in an exact way features such as, priorities,
synchronization, forking, blocking and multiple resource holding [15]. On the
other hand, the asynchronous nature of a Petri net makes it suitable for
representation of real time systems. A Petri net also possesses inherent
concurrency and parallelism and can be used as a hierarchical modelling
technique. This allows us to represent a complex system through simpler models
at various levels of abstraction. Reviews of application of Petri nets in a
manufacturing environment appear in Janssens(8] and in DiCesare et al.[6].

3. SYSTEM DESCRIPTION

Flexible manufacturing can be viewed as a system with two macro states:
physical and informational. From the physical point of view, an FMS consists
of a set of machines, equipment, materials and products. The informational
system comprises a set of logical processes controlled through programs for
changing system states. Consequently, the complexity of the system is
drastically increased due to evolutionary nature of the states.

In such a situation, integration of physical and informational system
becomes much more complex and hence an extensive research for
synchronization is required from the root level of manufacturing. The Petri net
based cell controller receives a preliminary munufacturing plan for a product or
a batch of products, performs an analysis, feedbacks all possible decision
alternatives to the factory level controller and finally coordinates the
implementation of the selected decision within the cell. As the cell controller is
related both to an internal module (coordinated the physical tasks within the
cell) and to an external module (request program from the factory controller),
we consider a typical cell configuration in a flexible production environment



18 JANSSENS AND TABUCANON

@ INPUT ouTPUT

o000 00 aao PLC
FMCC ok
ROBOT R1
PLC

XY

PL
M/C Ml ¢ M/C M2

Figure 1. Flexible Machining Cell

shown in Figure 1.

4. NEED OF IDEFO TECHNIQUE IN CELL CONTROLLER DESIGN

The literature on system analysis suggests that a high percentage of design
errors in contemporary computer-based information systems can be supported by
the information system. This suggests that one must try to determine a set of
correct and complete set of requirements before embarking on the design of a
system [4). In controller design, the interrelationships of the objects
(information, data, and material) needs to be simplified necessitating the need
of a static modelling technique, IDEF0, a top-down methodology with graphical
potrayal is suitable for a hierarchical decomposition of a complex munufacturing
system of an FMS. Using the IDEF0 method, syntactical consistencies between
design and specification can be checked and an automated support to dynamic
modelling techniques for cell controller design is provided. A state of the art
review on IDEFQ can be found in Colquhoun et al. [5].
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5. PROBLEM FORMULATION

In a flexible manufacturing system, a cell controller requires sufficient
intelligence to identify and evaluate a set of decision alternatives to meet the
objectives set by the factory level controller. The objectives can be expressed
as: throughput, minimum makespan and due dates. The system state changes
due to the occurrence of certain events in real time. In a real life situation,
changes of the states directly imply changes in the status of different system
components. In this dynamic situation, cell controllers usually are
semi-autonomous. They receive instructions from a higher level controller and
then arrange activities within the cell to follow the instructions. In this system,
all decisions are made by the factory level controller and programs are
downloaded into the equipment controllers through the cell control system. This
system is called a centralized production system. In other cases, the whole
responsibility is given to the cell level controllers for decision making as well as
for inter-cell communications. In this case, only the status of each cell is
reported periodically to the factory level controller. The responsibility of the
factory level controller comes in when there is a significant departure from the
planned activities.

Both the above systems have their relative advantages and disadvantages
in their respective mode of operations. Our aim is to develop a cell controller
for an FMS providing decisive power to the cell controller for real time
scheduling and for control of operations within the cell. It is required to build
a control mechanism and a decision structure for effective utilization of
available cell resources. The system is far from easy to build due to many
interacting system components. This necessitates a systematic approach for the
generation of decision alternatives in a manufaturing cell. The prime objective
of the cell controller is to fulfill the objectives set by the factory level
controller. Every alternative generated by the cell controller should provide a
clear picture: at what time, which part will visit which machine for which
operation, including the flow path of respective programs for execution of these
operations.

With this knowledge on the features of manufacturing operations in an
FMS, the need is identified for an efficient control mechanism and a decision
structure for real time implementation of operations in the cell.

To investigate this problem, a typical flexible machining cell with two
general purpose NC machines (M1 & M2), one programmable robot (R1),
input/output buffers and a cell controller is considered (Figure 1). The factory
controller is sending a batch of product number PROD-QO01 to the machining
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cell with an objective to minimize the makespan for the assigned batch.

The batch consists of three part types- Part X, Part Y and Part Z. For
simplicity it is assumed that no earlier work has been assigned to the cell and
the ratio of the product mix is 1:1:1. For each part type the factory controller
provides necessary time requirement for each of the operation along with
program codes as shown in the Table 1. Figure 2 shows the operational
constraints of each part. For example, part X cannot be processed on machine
M2 until it finishes operations on machine M1. It is the responsibility of the
cell controller to analyze which part will enter which machine at what time so
the batch can be processed in minimum time. One additional system constraint
has been imposed by the factory level controller. The part programs may not
be available in the central database management system for loading to the
equipment controllers at the time required (the model is proposed to operate in
centralized program distribution). The cell controller has to look for an
alternative which will be synchronized with the available part programs in the
centralized database management system to build an executable integrated
model to reach the specified goal.

Table 1. Activity Durations and Program Codes of Parts

Part Type X (Part Type Y| Part Type Z

Activity Activity o
No description . Prog. |, Prog. . rog.
Time Codo Time Code Time Code
Robot Rl Loading Part From I/B
1 Buffer to M1 1 [R1X01{ 2 (R1YO01l| =* *
2 M1 Processing a Part 3 |M1X01| 9 |M1YO1| =* *
Robot R1 Unloading part From
3 M1 and Loading M2 2 |[R1X01| * * % *
Robot R1 Loading Part From I/B
4 Buffer to M2 % * * * 1 R17Z01
5 M2 Processing a Part 4 [M2X01| = * 6 [M2Zz01

6 Robot R1 Unloading Finished Part 2 |R1X03| 3 |R1Y02| 2 |R1702

M1 and M2 are Machines Batch No PrOD-Q01
R1 is Robot
I/B Buffer is Input/output Buffer

The following simplifying assumptions are made:

— tools and auxiliary equipments for processing each operation are available in
the tool magazine,

— there is no machine or tool failure during processing of the parts,
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Figure 2. Operational Constraints of Parts

— machines and robot can handle one operation at a time
— negligible time is requried for loading of part programs to the programmable
controllers of the cell.

6. METHODOLOGY

An FMS is a complex discrete event dynamic system with a large number of
interconnected components. Better performance and high flexibility can be
achieved in it by effective control and decision-making procedures and by
appropriate redundancy management (Teng and Black [13]). Flexibility in this
case implies a variability of decision alternatives with respect to the specified
objective assigned to the cell controller. The modelling technique used to model
at various stages to capture the static and dynamic behavior of the system at
the cell level are described in the following sections. The method is illustrated
in Figure 3.

6.1 Phase I : IDEF0(Static) Modelling

IDEFO is top down design methodology where modularization and elaborations
are two key concepts which makes the design and analysis of complex system
manageable. The system design is organized in modules and each module is
elaborated in more detailed design until it can be implemented in a reasonable
states. One of the important features in static modelling is to capture the
relational functions of the system’s objects. For this task, a static model (the
IDEF0 model) is developed in three hierarchical levels: level 0 (Factory level);
level 1 (Cell level); level 2 (Operational level).

The system is decomposed in a hierarchical way to create children which in
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turn may be parent for next level of child creation. This creation continues
until the system reaches the lowest level. At the highest level, the parent node
describes the function/activity “Produce Batch of Product No. PROD-QO01” .
To implement this activity in the assigned cell, the cell controller has to check
for consistency of all the objects. First of all it is necessary to define the input
objects (here the input object is necessary raw materials for the batch of
product) and then define output objects (here it finished parts of the batch).
To transform the input objects to output objects, the mechanism needed are
machine M1 & M2 and Robot R1. The next part is to determine the objects
which control the parent activity of batch production. To execute the
transformation, part programs for the operation of the machines and robot are
needed. So the availability of the part programs will definitely control the
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parent function in zero level. Other control command is availability of cell
controller for communicating necessary informations.

In the next step, activity node of level 0 is decomposed to the functions:
‘Produce product X' , ‘Produce product Y’ and ‘Produce product Z’
Inputs, outputs, mechanism and control functions are shown in Figure 4. For a
detailed analysis of the function at level 1, further decompositions are carried
out up to the lowest level. This level contains the operations performed by
machines and robots. Four distinct reports are generated from the model: the
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Figure 4. IDEFO mode! at highest level
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IDEFO0 report, Activity report, Arrow report and Consistency report.

The reports indicate whether the model is consistent with all necessary
linking of defined objects. The IDEF0 report gives a complete view on all
activities with details of input, output, mechanism and control functions. The
Activity report shows the functions together with all interrelated objects The
Activity and Arrow reports are used for the conversion from the static (IDEFO0)
model to dynamic (Petri net) model. The Arrow report shows the individual
objects and their flow path through the functions.

The model described above provides a sufficiently complete definition of the
structure for creating dynamics and semantics of the given batch of production
to carry out further analysis of the system.

6.2 Phase [I: Petri Net Modelling

In this phase, Petri net models are developed based on the IDEF0 model for
real time qualitative and quantitative analysis of the given problem. For
developing the Petri net models the conventions followed are (e.g. Silva and
Valette [12]):

(i) Conditions in the system such as availability of raw materials,
machines, robot, end programs are represented by the Petri net’s places.

(ii) Events occurring in the system (such as loading/unloading of parts,
execution of programs, finishing of processing activity) are represented by
transitions. 'The transitions incorporated here are timed transitions. A
deterministic time value is associated with each transition.

(iii) States holding the conditions of the system are represented by the
tokens. (A token is represented by a black dot in the specified place). Presence
of a token in a specified place indicates the specified condition to be true. For
example, a token is at place Pl in Figure 5 implies that the robot R1 is
available for service.

(iv) Directed arcs determine the direction of material and information flow
in the system. By putting weights on these arcs, pre and post conditions are
specified for firing of a particular transition. No specification of a value
indicates a weight equal to one.

On the basis of the Arrow and the Activity reports, the Petri net models
are constructed by converting and analyzing the activities and arrows of IDEF0
model with the following convention:

Arrows represent pre and post conditions while functions (activities) are
represented by transitions or (transition-place)-pairs. Those conditions which are
the assumptions in the Petri net model are not shown in IDEF0Q modelling, but
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they play an important role (such as availability of tools or machine center
(M/C) breakdown).

6.2.1 Physical Part Flow model

To analyze the dynamic behavior of the physical part flow, a Petri net model
(PNM) is constructed on the basis of the Arrow and the Activity reports
shown in Figure 5. The initial markings are represented by black dots.
Interpretation of the places and transitions is described in Table 2 and Table 3,
respectively.

SYMBOLS

PLACE (CONDITIONS)
TIMED TRANSITIONS (TIMED EYENTS)

Figure 5. Petri Net Model of Physical Part Flow

Table 2. Interpretation of places in the PNM shown in Fig. 5

Place Interpretation

Pl Robot R1 is available for service

P2 Raw material for part type Y ready

P3 Machine M1 ready

P4 Raw material for part type X ready

P5 Machine M2 ready

P6 Raw material for part type Z ready

PT Machine M1 processing part type X

P8 Part type X ready to unload from machine M1
P9 Machine M2 processing part type X

P10 Part type X ready to unload from machine M2
P11 Finished arts ready in output buffer

P12 Machine M1 processing part type Y

P13 Part type Y ready to unload from machine M1
P14 Machine M2 processing part type Z

P15 Part type Z ready to unload from machine M2
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Table 3. Interpretation of timed transitions in the PNM shown in Figure 6
(Timed value of the transitions are shown in parentheses)

'(I‘t;.t:s(;t):lon Interpretation

t2 Robot transfers part type X from input buffer to machine M1(1)
t3 Machine M1 finishes processing part type X (3)

t5 Robot transfers part type X from machine M1 to machine M2(2)
t6 Machine M2 finishes processing part type X (4)

t8 Robot R1 transfers part type X from machine M2 to output buffer(2)
t10 Robot transfers part type Y from input buffer to machine M1(2)
t11 Machine M1 finishes processing part type Y (9)

t13 Robot transfers part type Y from machine M1 to output buffer(3)
t15 Robot transfers part type Z from input buffer to machine M2(1)
t16 Machine M2 finishes processing part type Z (t)

t18 Robot transfers part type Z from machine M2 to output buffer(2)

Since the Petri net model is an abstract and formal tool to describe the
evolution of systems, the system can be studied through a coverability tree.
Such a tree has a root, the initial marking Mo, The nodes of the tree respresent
markings generated from the root and its successors. For a bounded Petri net,
the coverability tree is called the reachability tree since it contains all possible
reachable markings (Murata {10]). A reachability tree represents all the possible
reachable states of the system starting from the initial marking. From the
reachability tree, the other properties of the Petri net can be verified to prove
the validation of the model.

To analyze the system’s dynamic behavior the reachability tree is
constructed for the physical part flow model as shown in Figure 6. The tree is
split into three distinct parts shown in Figures 6(a), 6(b) and 6(c). The
reachability tree in Figure 6(a) indicates those possible states where the cell
controller selects part type Y to start first operation of the cell, i.e., loading of
part type Y to machine by robot R1. Similarly, Figures 6(b) and 6(c) show the
possible states in selecting first part type X or part type Z, respectively. In
such a situation the cell controller needs sufficient intelligence to give priority
to the job which fulfills the assigned objective.

Many situations may arise in selecting competing events on the way to
finalize batch of production. In this case, it is necessary to make a choice
among alternative actions and to solve conflicts among competing events. All
possible firing sequences are enumerated from the reachability tree and a total
of 112 are found. The Petri net can describe non-determinism and parallelism of
activities but there is no formalism to represent its sequences. Moreover the
sequences of activities can contain repetitions, non-determinism (choice) and
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parallelism, In such cases the problem of modelling sequences becomes more
complex. Therefore, the sequences which possess such properties need an
in-depth analysis to reveal the necessary information along with the set of
alternative decisioins for the makespan in an ascending order of durations. To
solve this complicated task, a simple algorithm is developed to calculate the
makespan for each firing sequence.

To develop an algorithm for the calculation of the makespan the following
constraints are imposed by the system:

Operational or Sequential constraints: These constraints shows the
precedence relations of operations. They are-

(a) for part type X: Operations X1(t2)-X2(t3)-X3(t5)-X4(t6)-X5(t8):
(b) for part type Y: Operations Y1(t10)-Y2(t11)-Y3(t13):

(c) for part type Z: Operations Z1(t15)-Z2(t16)-Z3(t18).

Sequences of transition firings shown in parentheses.

Mutual Exclusion Constraints: These constraints represent the operations
which share one of the resources in the system. Operations X1(t2), X3(t5),
X5(t8), Y1(t10), Y3(t13), Z1(t15) and Z3(t18) share the resource ‘machine M
2’ . The algorithm proceeds as follows:
Select a sequence from the alternative decision chart, and compute start and
finish time of the first operation.
Select the next activity. Check parallelism of the selected activity with the last
operation.
If parallel,
Intitialize its start time with last operation.
Check if it is start of new part.
If new part,
compute start and finish time of the first activity of the next part
type. Go to Select next activity.
If not new part,
Check the finish time of the last operation/mutual exclusion of
precedent activity.
If precedent’s finish time is greater than the initialized time value,
Reset initial value to this new value.
Compute and update the total time for the alternative. Go to
Select next activity.
If the initialized value is smaller or unchanged
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Compute and update the total time for the alternative. Go to
Select next activity.
If not parallel,
Check precedent activity for operational and mutual exclusion
resources (constraints).
If operational,
Update start and finish time by simple addition for the respective
part. Go to Select next activity.
If resource,
Check if it is start of another part.
If start of a new part,
Compute start time of the new part taking the finish time of
the last operation’s start time. Go to Select next activity.
If not a new part,
Re-check the generation of sequences because there is a
probability that the model is wrong or deadlocked.
Complete all activities of the sequence and enumerate the total makespan for
the alternative.

The algorithm is restricted by the assumed configuration of the system. In
this case at most two activities can be concurrent. However, it is believed that
by using the same procedure the system can be generalized.

From the algorithm all possible time durations for the entire batch of
product can be calculated. The algorithm generates a new type of diagram, a

‘concurrent behavioral diagram’ , showing start and finish time of each
operation for each activity duration, the degree of concurrency and the
invariant set of alternatives. As an example, a behavioral diagrm is shown for
the minimum makespan objective (Figure 7). Now we can select to execute an
alternative which minimizes the makespan and is synchronized with the
available part programs in the centralized database management system
controlled through the factory controller.

From the reachability tree other properties can be verified:

Boundedness: The model is 1-bounded except for the target buffer place
(Output Buffer). The assumption that the number of processes executed by
machines and robot is limited to at most one, is validated.

The number of tokens in the target buffer indicates the number of finished
parts of the given batch of product.

Liveness: The Petri net is live. It guarantees deadlock-free operation.



32

-

I
t13

_

7

JANSSENS AND TABUCANON

Petri Net Algorithm

Minimum Time 22 units

Shortest Processing Time Rule

Minimum Time 25 units

First In First Out Rule

Minimum Time 27 Units
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Machine M1
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Figure 7. Comparison of Petri Net algorithm, SPT and FIFO rule
for minimal makespan
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Reachability: Reachability of various states from the initial or any
intermediate states can be clearly seen from Figure 6. For instance in Figure
6(a) the state (P4, P13, P14) can be reached after firing the transitions t10,
t11 and t15. Here the state (P4, P13, P14) represents processing of part type
Y. Part type Z and availability of raw materials for part type X, respectively.

The following conventions are used to develop a physical part flow model
in the software using inbuilt specification of the software.

Token attributes:

#ml = availability of machine M1 for operation
#m2 = availability of machine M2 for operation
#robot = availability of robot Rl for operation

Timed transitions: Timed transitions are shown with a variable named
“delay” , assigned with different timed values for different transitions; e.g.,
delay: =3 implies that three time units are assigned to the related transition.
Arrow attributes: Each arrow possesses attributes according to its necessity,
shown in respective figures. For example in module Physical. Part Y, the arrow
from place M/C M1 shows an attribute #ml which means this arrow is
allowed to carry the token having an attribute #ml.

Target Buffer: Place P11 repressents the buffer in Figure 5. Tokens in this
place indicate finished parts.

With these attributes each time the software randomly selects the fireable
transitions from the potential candidate events. Hence the model is simulated
many times and it gives the simulated time and some of the sequences that we
have computed by reachability graph. This proves the validity of the computed
results as well as of the model.

6.2.2 Information flow model

In a similar manner as explained for the physical part flow model, we have
constructed the information flow model from the IDEF0 model by creating
more places for the arrow of ‘cell controller’ such as ‘cell controller ready to
request program’ , ‘programs request for respective operations’ and ‘program
requested’ . in the same way, the arrow ‘part programs’ is concerned with the
availability of respective part programs in the database management system
controlled by factory controller, and programs ready for execution.

However to clear the model we create a place for ‘program back’, where
the programs are accumulated after execution of each operation. The tokens in
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the information model hold the following attributes:
#cc = availability of cell controller for communication

#X1 =

#Progl

#X2 =

#Prog2

#X3 =

#Prog3

#X4 =

#Prog4

#X5 =

#Progh

#Y1 =

#Prog6

#Y2 =

#Prog7

#Y3 =

#Prog8

program request for operation X1, i.e. loading of part X from input
buffer to machine M1

= availability of a part program in the central database
management system controlled by the factory controller for operation
X1

program request for operation X2, i.e. processing of part type X in
machine M1

= availability of a part program in the central database
management system controlled by the factory controller for operation
X2

program request for operation X3, i.e. loading of part from machine
M1 to machine M2

= availability of a part program in the central database
management system controlled by the factory controller for operation
X3

program request for operation X4, i.e. processing of part type X in
machine M2

= availability of a part program in the central database
management system controlled by the factory controller for operation
X4

program request for operation X5, i.e. unloading of finished product
from machine M2 to output buffer

= availability of a part program in the central database
management system controlled by the factory controller for operation
X5

program request for operation Y1, ie. loading of part type Y from
input buffer to machine M1

= availability of a part program in the central database
management system controlled by the factory controller for operation
Y1

program request for operation Y2, i.e. processing of part type Y in
machine M2

= availability of a part program in the central database
management system controlled by the factory controller for operation
Y2

program request for operation Y3, i.e. unloading of part type Y from
the machine M1

= availability of a part program in central database management
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system controlled by the factory controller for operation Y3

#71 = program request for operation Z1, i.e. loading of part type Z from
input buffer to machine M2

#Prog9 = availability of a part program in the central database
management system controlled by the factory controller for operation

Z1
#72 = program request for operation Z2, ie. processing part type Z in
machine M2

#Progl0 = availability of a part program in the central database
management system controlled by the factory controller for operation
Z2

#73 = program request for operation Z3, i.e. unloading of finished part Z
from machine M2

As each machine or robot can execute only one program at a time, the
capacity of the place ‘program execution’ is limited to one.

With these features, the model is run in the software and shows deadlock
in some situation which can be visualized in animation of the model. Deadlocks
occur because the physical part flow model is not synchronized with the
information flow model for the desired alternative to execute. To solve this
problem, it is necessary to find some synchronization procedure by adopting
some specification.

6.3 Phase Iii: Integrated Petri net Model for Physical Part Flow and
Information Flow

A Petri net structure can be viewed as partial ordering of transitions (events).
Knowledge of the complete dynamic behavior of the physical part flow and
information flow should be revealed in this model. A decision structure for each
set of alternatives can be viewed from their respective concurrent behavioral
diagrams. For instance take the set of sequences for minimum makespan
schedule which is enumerated as 22 time units using our Petri net algorithm.
From the behavioral diagram shown in Figure 7 for the respective transition
sequence both show invariance with respect to discrete time events for
availability of part programs in the central database management system. From
the figure it is clear that to execute this decision in the assigned cell, necessary
part programs must be available in central database management system in the
following discrete time epochs shown in Table 4.

To synchronize the physical part flow model with the information flow
model two dummy nodes P1 and P2 are created. From the behavioral diagram
it is clear that the operating X4 and Y1 are concurrent and both strated at
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Table 4. Part programs with discrete time epochs for
the minimum makespan sequence.

Time Part Program Program code Transitions
0 ##programl R1X01 t2
1 #program?2 M1X01 t3
4 #fprogram3 R1X02 tH
5 ##program4 M1X01 t6
5 #program6 R1Y01 t10
8 #program7 M1Y01 t11
10 #program5b R1X03 t8
12 #program9 R1Z01 t15
13 #program10 M27Z01 t16
17 #program8& R1Y02 t13
20 ##programll R1Z02 t18

the same time. By creating the dummy node P1, the available token in the
place as an output result of operation X3 leads to exection of concurrent
activities X4 and Y1. Similarly another dummy node activates operations X5
and Z1. In this approach an illustrated instance can be animated to visualize
the real time implementation of the decision. This is only one instance
demonstrated. With this approach assigning different objectives to the cell
controller such as due dates for specific jobs, the same generated list will
provide all possible due dates from which the cell controller can select the
necessary ome for execution. However, the selected sequence should also by
synchronized with the available part programs in the central database
management system in the proposed system.

For the same product batch, results of the Petri net based algorithm are
compared with Shortest Processing Time(SPT) and First In First Out (FIFO)
scheduling rule(Figure 7). In the SPT rule, the minimum makespan is 25 time
units, while in FIFO scheduling, the minimum time is 27 units. On the other
hand, the Petri net based algorithm gives 22 units of time for the same batch
of production. This proves the efficiency of the Petri net based cell controller.
In this work, we have shown a dynamic approach for generating real-time
decisions and control structures to solve the FMS scheduling problem.

7. CONCLUDING REMARKS

In our approach, a static model is first developed to understand the underlying
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detailed functional relationships between various manufacturing activities with
the IDEF-method. This model provides sufficient definition for developing
semantics of the dynamic model.

To construct the dynamic model, it is found that the batch production
system can be decomposed into two distinct domains: physical part flow and
information flow. In the physical part flow Petri net model, the reachability
tree technique is used to derive the decision structure of the problem.
Sequencing the part process plan should be such that the detailed knowlege
about the real state of the system is available. In this context, a simple
algorithm is developed to obtain the minimal time to complete a batch of
products assigned to the cell.

Alternative decision sets are generated for various objectives, In a later
stage, for the chosen objective, the selected alternative is synchronized to
develop an integrated model for the product batch. Complete information
concerning the entry of parts to the machines, their exits from the machines,
makespan of the batch, processing durations, and idle periods can be seen in a
new type of diagram, which we called the ‘concurrent behavioral diagram’ .

In the present study, a comparative study of other scheduling techniques
such as Shortest Processing Time (SPT) and First In First Out (FIFO) is
made. It is found that the present methodology provides better results and
more information with a higher flexibility of alternative decisions. This approach
however is limited to a few machines and a few parts.

The proposed methodology is superior to simulation because the latter does
not have the opportunity to study deadlock, priority, and non-determinism in
real-time. The combination of using IDEF and Petri nets has proven to be an
efficient control mechanism at the cell level.
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