International Journal of Management Science
Vol 3, No 1, May 1997

DEVELOPMENT OF A TABU SEARCH HEURISTIC FOR SOLVING
MULTI-OBJECTIVE COMBINATORIAL PROBLEMS WITH APPLICATIONS
TO CONSTRUCTING DISCRETE OPTIMAL DESIGNS

JOO SUNG JUNG

Department of Manpower Management,
Korea Institute for Defense Analyses

BONG JIN YUM

Department of Industrial Engineering,
Korea Advanced Institute of Science and Technology

ABSTRACT

Tabu search (TS) has been successfully applied for solving many complex combinatorial
optimization problems in the areas of operations research and production control. However,
TS is for single-objective problems in its present form. In this article, a TS-based heuristic
is developed to determine Pareto-efficient solutions to a multi-objective combinatorial
optimization problem. The developed algorithm is then applied to the discrete optimal
design problem in statistics to demonstrate its usefulness.

1. INTRODUCTION

Various complex combinatorial optimization problems arise in engineering and
science fields. Obtaining an exact optimal solution for such complex
combinatorial optimization problems is very difficult, and therefore, a heuristic
method is usually employed instead. Tabu Search (TS) has recently emerged as
a promising metaheuristic for solving such complex combinatorial problems.
Unlike other search algorithms (e.g., a steepest descent or ascent algorithm), TS
employs a unique scheme for alleviating the risk of being trapped at a local
optimum. Many successful results of TS have been reported in the areas of
operations research and production control (e.g., Glover et al. [6]). However,
little application has been made for solving various combinatorial optimization
problems in statistics. One exception is Jung and Yum [7] in which TS was

75

76 JUNG AND YUM

successfully applied for solving single-objective discrete optimal design problems.

An optimization problem is usually formulated based upon a single
objective for mathematical tractability, although a multi-objective formulation is
more realisticc. The current TS heuristic is designed for single-objective
combinatorial problems. In this article, we first extend the TS strategy to the
case of multiple objectives, and then, develop a TS-based heuristic for solving
the discrete optimal design problem with two popular criteria. To the best of
our knowledge, no systematic approach has been developed for solving
multi-objective discrete optimal design problems.

2. PRELIMINARIES

2.1 Multi-Objective Optimization

A combinatorial optimization problem with multiple objectives can be
described as follows.

Minimize {F(s) = (f,(s), =, f(8) | s€S}
where
f{(s): objective functions, =1, 2, **, w,
S : finite solution space,
s : feasible solution (a vector of discrete values).

Typical solution approaches for a multi-objective problem include the
following (Chankong and Haimes [2]).

1. Reduction to a problem with a single objective obtained as a combin-

ation of the given multiple objectives.

2. Transforming to a single-objective constrained problem where all but one

objective serve as the constraints.

3. Employing a direct approach which considers all the objectives

simultaneously.
Among the above three, the direct approach is considered in this article.

Due to the conflicting nature of the objectives, multi-objective problems
rarely have solutions that simultaneously minimize all of the objectives. Instead,
they have several solutions called Pareto-efficient solutions whose property is
such that no improvement in any one objective is possible without sacrificing
some other objectives. A Pareto-efficient solution is also called a nondominated

CONSTRUCTING DISCRETE OPTIMAL DESIGNS 77

or noninferior solution. In this article we are concerned with finding
Pareto-efficient solutions for the discrete optimal design problem with two
objectives. Once Pareto-efficient solutions are found, a best compromise solution
can be determined based upon the decision maker’s utility or preference
function {2].

2.2. Dominant and Pareto-efficient Solutions

One property that is commonly considered as necessary for any candidate
solution to a multi-objective optimization problem is that the solution is not
dominated. For a minimization problem, a feasible solution s; is dominated by

another feasible solution s, if and only if
ft(sl) = ft(SZ)’ t= 1! 29 e, W,

and

ft(sl) > ft(SZ)

for at least one t. A feasible solution s* is Pareto-efficient if and only if there
exists no other feasible solutions which dominate it.
Let s; € S be the unique optimal solution for the objective f,

(t=1,2,+, w). Then s; is also a Pareto-efficient solution to the given

multi-objective optimization problem. Hence, if there exists a unique optimal
solution for each of the given objectives, then the minimal number of
Pareto-efficient solutions to the given multi-objective optimization problem
equals the number of different optimal solutions to single-objective problems.
The maximum number of Pareto-efficient solutions is theoretically the number
of all feasible solutions. The actual number of Pareto-efficient solutions lies
between the above two extremes. For more detailed description of dominant
and Pareto-efficient solutions, the reader is refered to Chankong and Haimes [2]
and Ringuest [10].

2.3. Basic Features of TS

In this section, we describe the basic features of TS as proposed by Glover [3]
for a single-objective combinatorial optimization problem. :

TS is a metaheuristic in the sense that it iteratively explores the solution
space with another local heuristic search procedure being used at each step. In
the process of iterations, let s be the current solution. Then, a typical descent
algorithm generates a neighborhood U(s) of s, makes a search over U(s) to
find -a best solution s°, and moves from s to s for the next iteration if

78 JUNG AND YUM

As) < As) for a single-objective minimization problem and stops otherwise.
One inherent problem to the above procedure is that it will in general lead to
and be trapped at a local minimum of f. In TS, various features are provided
to overcome such a difficulty.

To escape from a local minimum, TS accepts a move from s to s, even
though As’) > As). However, such an acceptance of a disimproved solution
may result in cycling. To avoid such cycling, TS maintains a memory structure
called a tabu list 7 which keeps track of solution transitions over some
previous iterations. Then, 7T is used at the current iteration to forbid certain
moves that may lead to previously visited solutions. One possible way of
constructing 7" is to record ¢ most recent solutions. This will prevent cycles
of length less than (or equal to) ¢ from occurring in the course of iterations.
However, keeping track of ¢ previous solutions and checking whether or not a
solution matches with any one of them could be very time- and
space-consuming. Therefore, some modifications to the above definition of T
are usually made. Glover [4, 5| suggests that the tabu conditions be based on
selected attributes of moves. The tabu size ¢ is usually fixed, although it could
be dynamically varied in the course of iterations.

Although the tabu conditions based on some selected attributes of moves
are efficient in terms of time and space, it could be too restrictive in the sence
that it may also forbid moves to unvisited solutions of possibly better quality.
It is thus desirable in certain situations to cancel the tabu status of moves.
This is performed by means of aspiration level conditions. For instance, let
A(A(s)) be an aspiration level of an objective function value next to be
reached when the current value is As), and consider a move m from the
current solution s to s. Then, an aspiration level condition may be described
as As) < A(As)) for a minimization problem. If this condition is satisfied, m
may be regarded as a legitimate move, even though it is in tabu status. As
A(A55)), As") is frequently adopted where s* is the best solution obtained up
to the current iteration. For a more general scheme for aspiration level
conditions, the reader is referred to Glover [4 ,5], Glover et al. [6], and de
Werra and Hertz [11].

Another useful feature of TS is the so called long-term memory [6], which
allows TS to explore new regions of the solution space. For a given
optimization problem, define a ‘try’ as a sequence of iterations until the
stopping condition is met. When an optimization problem is solved several
times to obtain a better solution, the optimum could be reached faster if a
purposeful alternate starting solution is employed instead of a randomly chosen
one at each try. For an alternate starting solution, we may use a long-term

CONSTRUCTING DISCRETE OPTIMAL DESIGNS 79

memory function and generate a new starting solution from the region least
frequently visited in the previous tries.

One try of TS may terminate based upon some combination of the
following conditions [6]:

1. A solution which gives the known optimal f is found.

2. The neighborhood U is empty.

3. The total number of iterations exceeds a predetermined maximum.

4. A predetermined number of iterations is performed without improvement

since the last iteration in which improvement is made.

3. TS-BASED DIRECT HEURISTIC FOR MULTI-OBJECTIVE
COMBINATORIAL PROBLEMS

The proposed TS-based direct heuristic (TSDH) for multi-objective combin-
atorial optimization problems is based on the properties of Pareto-efficient
solutions and the basic idea of TS. It also belongs to the class of direct
algorithms since all the objectives are considered simultaneously.

3.1. Basic Features of the Proposed Algorithm

From the definition of a Pareto-efficient solution, we know that the optimal
solution to each single-objective problem, min f(s), s€ S, t=1,2, -+, w, is a
Pareto-efficient solution. Hence, the initial set of Pareto-efficient solutions to the
multi-objective problem consists of these optimal solutions, each of which can
be found by TS. However, we cannot guarantee that the solution obtained by
TS is always the global optimal solution, and therefore, we will call the initial
set a near Pareto-efficient solution set (NPE-set).

In a try for solving the given multi-objective combinatorial problem, we
iteratively search for a best possible dominant solution beginning with a
starting solution. In the first try, a starting solution is obtained by random
generation, and for successive tries new starting solutions are generated from
the region investigated least frequently.

In a given try, let s be the current solution and s* be the dominant
solution obtained up to the current iteration. In the neighborhood of [Xs),
consider a solution s . If s dominates s*, we accept s° and make a move
from s to s for the next iteration whether or not s is in tabu status. This
is based upon the idea of aspiration level condition. In finding such an s over

80 JUNG AND YUM

U(s), we may take the one encountered first for computational efficiency
instead of examining the entire U(s). If there does not exist s in Us)
which dominates s*, consider two cases. If all solutions in U(s) are not
dominated by s* (i.e., if all solutions in U(s) are indeterminate with respect
to s*), then this procedure stops. Otherwise, let E(s) be the set of solutions
in U(s) which are dominated by s* and are not in tabu status. Then, we
select a best s from E(s), and move from s to s for the next iteration.
Acceptance of such non-improved solutions is to overcome the possibility of
being trapped at a locally efficient solution.

The size of the tabu list is fixed in the present study. Maintaining the
tabu list is the same as that for a single-objective problem. Aspiration functions

A(F(s*)) = (f,(s*), fo(s*), -+, f,(s%)) are the values of the objectives for

the dominant solution s* obtained up to the current iteration.

If a predetermined number of iterations (NEMAX) are performed without
getting another dominant solution after the last iteration in which a dominant
solution is found, then the current try is terminated, and the best dominant
solution s* is taken as a candidate for a (near) Pareto-efficient solution. In
accordance with the definition of a Pareto-efficient solution, if there does not
exist a (near) Pareto-efficient solution which dominates s*, then s* is included
in the NPE-set and the existing (near) Pareto-efficient solutions dominated by
s' are excluded from the NPE-set. With the above procedure, the NPE-set
approaches the true set of Pareto-efficient solutions as the number of tries
increases.

3.2. The TSDH Algorithm

Step 0. Determine a (near) optimal solution to each single-objective problem by
TS and put them into the NPE-set.

Step 1. Input TRYMAX (the maximum number of tries for generating
candidate (near) Pareto-efficient solutions for a given multi-objective
problem) and NEMAX. TRY =1

Step 2. Choose a starting solution s (If TRY = 1, choose it at random.
Otherwise, generate it from the region least frequently investigated).
s* (current near Pareto-efficient solution) = s.
T (tabu list) = {@}.
NE (iteration number) = 0.
NEBEST (the last iteration in which an s* is obtained) = 0.
Initialize the aspiration function: A(F)= (f,(s*), fo(s*), *+«, f,(s%)).

Step 3.

Step 4.

Step 5.

Step 6.
Step 7.

Step 8.

Step 9.

CONSTRUCTING DISCRETE OPTIMAL DESIGNS 81

NE = NE+1.

Generate a neighborhood UXs), the set of solutions obtained by
applying modifications to s.

If in [X(s) there exists s which dominates s*, then accept s° and
go to Step 5. Otherwise, consider two cases. If all solutions in U(s)
are not dominated by s, then go to Step 8. Otherwise, let E(s) (C
U(s)) be the set of solutions which are dominated by s* and are not
in tabu status. Select a best s° from E(s) and go to Step 6.

s =8, S =FLs), t=1,2,, w.

NEBEST = NE.

Update A(F) as (£,(s%), fy(s¥), - , fu(s¥)).

Update T. s = 5.

If (NE -NEBEST) > NEMAX, then go to Step 8.

Otherwise, go to Step 3.

If, in the NPE-set, there does not exist a solution which dominates s*,
then include s* in the NPE-set and exclude solutions dominated by
s from the NPE-set.

TRY = TRY + 1.

If TRY > TRYMAX, then stop.

Otherwise, go to Step 2.

4. TSDH FOR THE DISCRETE OPTIMAL DESIGN PROBLEM

4.1. The Problem

Consider the regression model

vi=hx)B+ e, i=1,2,>,nm (1)
where
x; = (xa, X2y "' xip)a
¥; = an observation corresponding to a (pXx1) vector x; from a

finite design space y,

W (x) = (b (%), ko), =, hi(x)), hy(x) = 1,

82 JUNG AND YUM

g = (/31, B2, » By,

&; = uncorrelated random error with mean 0 and constant variance o>

Let X be an (n x k) matrix of rank % with row ; containing #'(x) .
Then, the least squares estimator of 8 is given by B = (X'X) !Xy, with
the covariance matrix Cov(B) = (X' X)™!. The predicted response at an
xis ¥x) = K(0)B with Var¥(x)) = dx) = B ()(XX) " ().

As an illustration, consider a quadratic regression model with p = 4, and
assume that each factor x; (j=1,2,3,4) takes three values, -1, 0, and 1.

Then,

B(x;) = (1, xa, =, Zu, XaXp, =, XXy, X5, =, ¥4),
x = {x|x= (xl’ X9, x4)9 xj= —1’ 0,1 for j=11 2’ ety 4}7

- 2 2 -
1 2y o X XuXpg = Xp3Xu X0 Xy

2 2
1 21 Xy XXy v XXy X3ttt Xy

2 2
[1 X o X XmXep 7 X3Xwt X Ko]

For model (1), the traditional problem of constructing a discrete optimal
design can be described as selecting » design points {x,, i=1,2,, n}, not
necessarily distinct, from N candidate points in Y such that any one of the
following criteria is optimized (Note that N= 3?=8] in the above example).

1. D-optimality: Maximize |X X|
2. A-optimality: Minimize (X' X) ™!
3. E-optimality: Minimize the maximal eigenvalue of (X'X) ™!

4. G-optimality: Minimize the maximum d(x) for x= ¥

5. V-optimality: Minimize ﬁ;d(x,-)/ N

The above optimality criteria have the following statistical interpretations.
A D-optimal, A-optimal, and E-optimal designs minimize the generalized
variance, the average variance, and the maximum variance of the estimators of
the components of S, respectively. A G-optimal and V-optimal designs
minimize the maximum variance and the average variance of the estimated

CONSTRUCTING DISCRETE OPTIMAL DESIGNS 83

responses, respectively. For a review of the theory of optimum design, the
reader is referred to Atkinson and Donev [1], and Pukelsheim [9].

The above single-objective approaches cannot deal with various practical
aspects of a design. In this article we apply the proposed TSDH for solving the
discrete optimal design problem with the D-optimality and V-optimality criteria.

In other words, for two objective functions | X'X | and 21 d(x)/N under

model (1), we want to determine (near) Pareto-efficient solutions, each of which
consists of z design points, not necessarily distinct, from N candidate points

in y.
4.2. Description of the Proposed Algorithm

Initial NPE-set

For a given multi-objective discrete optimal design problem, we first obtain
a (near) D-optimal design and a (near) V- optimal design, each as a best
design obtained from 10 tries of TS. Next, we caJ’cula,te the D and V values
corresponding to the (near) D-optimal and the (near) V-optimal design,
respectively. Then, (Dmax, V) and (D, Vmin) are included in the initial
NPE-set where Dmax and Vmin are the D and V values for the (near)
D-optimal and the (near) V-optimal design, respectively. If Dmax = D and V
= Vmin, then we put any one of the two designs into the initial NPE-set.

Determination of candidate (near) Pareto-efficient designs

The starting designs are generated by the following methods. The starting
design for the first try is obtained by random generation, and each of the
successive starting designs consists of those points that have been least
frequently included in the design during the previous tries. The latter scheme is
based on the concept of the long-term memory.

The following neighborhood generation and search procedure follows the
DETMAX strategy (e. g., see Mitchell [8]) which is cheaper than others.
Although the DETMAX strategy was originally developed for generating
D-optimal designs, a wide range of empirical studies have also demonstrated
its superior performance for generating V-optimal designs.

Let X, be the design matrix composed of all N candidate points. At the

ith iteration for a given try, let X; be the current design and X" be the
current (near) Pareto-efficient design. A neighborhood U(X;) is defined as the
set of all possible exchanges of a point in X; with a point in X, . The search
over (X, is then initiated by first adding to the current design matrix X;

84 JUNG AND YUM

the point (say, the cth row) of X, at which d(x) is maximum, and then
subtract from the resulting (» +1)-point design the point (say, the dth row)
at which d(x) is minimum. If this exchange results in a design which
dominates X" whether or not the exchange is in tabu status, the :th
iteration stops and X;,, is set to the design matrix of the dominant design.

Then, X" is updated, and the next iteration begins. Otherwise, add again to
X, another row (say, the ¢ th row, ¢"#+c¢) in Xy at which d(x) is
maximum, and then, subtract from the resulting (»# +1)-point design the point
at which d(x) is minimum. If this exchange does not also give a design
which dominates X*, then the above process is repeated. If there does not

exist any exchange that yields a design which dominates X~ wuntil all rows of
Xy is considered, then consider two cases. If all exchanges generated by the

above process give designs which are not dominated by X", then this
procedure stops. Otherwise, let E(X;) (C U(X;)) be the set of designs which

are dominated by X and are not in tabu status. Then, select X, as X,
where X, is the best design from E(X;) subject to tabu restriction, and

start the next iteration.
The tabu list maintains the row numbers of X, which correspond to the

points dropped from the design, and the tabu list size ¢ is set to 7.
Aspiration function A(F) consists of the D and V Values for the

dominant design X" obtained up to the current iteration. At iteration 7,
suppose an exchange is in tabu status. If that exchange gives a design whose D

and V value are better than those of X" (i.e, if the design satisfies the
aspiration level condition), then the tabu status is overridden. Aspiration
function is updated whenever such a dominant design is found.

We stop a try as soon -as NEMAX iterations are performed without getting
another dominant design since the last iteration in which a dominant design is
found, and take X" as a candidate for the (near) Pareto-efficient design. For
finding an appropriate NEMAX, we tried several values of NEMAX for our test
problems, and chose 4 # as a reasonable compromise between solution quality
and computing time.

The NPE-set is updated in a similar way as described in Section 3.1. The
total number of tries for a given problem depends on how much computing
cost the decision maker can tolerate. As the number of tries increases the
NPE-set would approach the true set of Pareto-efficient designs.

CONSTRUCTING DISCRETE OPTIMAL DESIGNS 85

4.3. Examples

As an illustrative example, we consider a discrete optimal design problem for a
quadratic model with p = 4. Factor x; (/j=1, 2, 3, 4) is assumed to take
three values, namely, -1, 0, and 1. Hence, the total number of candidate points
N= 34 = 81. Suppose that the number of design points x = 23. Then, with
respect to D and V criteria, we want to determine Pareto-efficient designs, each
of which consists of 23 points out of 81 candidate points.

A (near) optimal design for each objective is obtained by 10 tries of TS.
The D and V values of the two (near) optimal designs are (0.3306x<10"
0.70373) and (0.2820% 10", 0.67302). The initial NPE-set is composed of these
two designs.

For the first try, the D and V values corresponding to the random starting
design was (0.1051x10°, 20.84063). Fig. 1. illustrates how the D and V values
of dominant designs are changed as iterations proceed. A best dominant value
(0.3140><1016, 0.66972) was obtained at iteration 69. The procedure was stopped
at iteration 161 after 4 » (= 92) iterations of no improvement since iteration

3.50E+15

¥

3.00E+15

T

2.50E+15
D

2.00E+15

T

1.50E+15

.

1.00E+15 % 1 b 3 A I
0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

N

Fig. 1 Changes in the determinant and the average variance in a certain try
of TSDH for the first example. '’ represents the termination point.

86 JUNG AND YUM

3.40E+15 o
® -
3.20E+15 L & *
® 0. .o ¢ °
3.00E+15 ¢ , o' .
'y ® [] L .
2.80E+-15 | ® s "
D ® o ! .
2.60E+15 © . .
[]
2.40E+15 | ‘ A
2.20E+15 |
2.00E+15 .2
6.40E-01 6.60E-01 6.80E-01 7.00E-01 7.20E-01
s

Fig.2 Near Pareto-efficient designs generated by 100 tries of TSDH for the first
example. '@ represents the final (near) Pareto-efficient designs.

69. Fig. 1 also shows that TSDH often accepts a design which is dominated by
X" . After 100 tries, the final 7 (near) Pareto-efficient designs were obtained as
shown in Fig. 2. Average solution time per try without input/output time on a
Vax 6430 was 6.7 seconds for this example.

For obtaining the NPE-set which is close to the true set of Pareto-efficient
designs, we generated another 900 candidate Pareto-efficient designs by TSDH.
The result showed that only one of the previous 7 (near) Pareto-efficient
designs was dominated by one of 900 candidate Pareto-efficient designs, and
only 3 new (near) Pareto-efficient designs were found.

We carried out the same experimentation for the other 10 problems of
quadratic models with p= 4 or 5 (see Table 1), and observed similar patterns
as for the first example except the case where (p, n) = (5, 29). Average
solution time per try without input/output time was also reasonable. That is,
those were 6 ~ 13 seconds for the examples with p= 4 and 26 ~ 70 seconds
for the examples with p = 5.

CONSTRUCTING DISCRETE OPTIMAL DESIGNS 87

Table 1. Performances of TSDH for quadratic models (p = 4, 5)

(p, #) PE1 PE2 ND T

(4, 17) 4 4 0 3.82
(4, 19) 1 1 0 7.48
(4, 21) 6 8 0 6.16
(4, 25) 7 10 2 12.12
(4, 27) 8 10 3 13.48
(5, 23) 4 5 1 34.01
(5, 25) 5 8 1 45.22
(5, 27) 4 9 1 40.67
(5, 29) 9 16 6 44.37
(5, 31) 5 7 0 69.87

PEl: number of (near) Pareto-efficient designs out of 100 candidate Pareto-efficient

designs .

PE2: number of (near) Pareto-efficient designs out of 1000 candidate Pareto-efficient
designs

ND: number of PEl which are dominated by another 900 candidate Pareto-efficient
designs

T: average solution time in seconds per try without input/output time

5. CONCLUSION

The TS-based heuristic, originally devised for a single-objective combinatorial
optimization problem, is extended to determine (near) Pareto-efficient solutions
to a multi-objective combinatorial problem. The developed algorithm is then
applied to the discrete optimal design problem in statistics.

Since no systematic approach has been reported for solving multi-objective
discrete optimal design problem, the relative performance of the proposed
algorithm is not assessed in the present investigation.

It is recommended that future research be directed towards improving the
present algorithm by considering such additional features of TS as dynamic
tabu list, multiple tabu lists, multiple aspiration level conditions, etc.
Comparisons of the proposed algorithm with an extended version of simulated
annealing or genetic algorithm would be another fruitful area of future research.

88 JUNG AND YUM
REFERENCES

[1] Atkinson, A. C. and Donev, A. N., Optimum Experimental Design, Oxford
University, Press, New York, 1992.

[2] Chankong, V. and Haimes, Y. Y., Multiobjective Decision Making: Theory
and Methodology Series, 8, North-Holland, New York, 1983.

[3] Glover, F., “Future paths for integer programming and links to artificial
intelligence” , Computers and Operations Research., Vol. 13, (1986), pp.
533-549.

[4] Glover, F., “Tabu search-Part I” , ORSA Journal on Computing, Vol. 1,
(1989), pp. 190-206.

[5] Glover, F., “Tabu search-Part II” , ORSA Journal on Computing, Vol. 1,
(1990), pp. 4-32. »

[6] Glover, F., Laguna, M., Taillard, E. and de Werra, D., “Tabu search” ,
Annals of Operations Research, Vol. 41, 1993.

[7] Jung, J. S. and Yum, B. J.,, “Construction of exact D-optimal designs by
tabu search” , Computational Statistics & Data Analysis, Vol. 21, (1996),
pp. 181-191.

[8] Mitchell, T. J, “An algorithm for the construction of D-optimal
experimental designs” , Technometrics, Vol. 16, (1974), pp. 203-210.

[9] Pukelsheim, F., Optimal Design of Experiments, Wiley, New York, 1993.

[10] Ringuest, J. L., Multiobjective Optimization: Behavioral and Computational
Considerations, Kluwer Academic Publishers, 1992.

[11] de Werra, D. and Hertz, A., “Tabu search techniques: A tutorial and an
application to mneural networks” , Working paper (Department de
Mathematiques, Ecole Polytechnique Federale de Lausanne, Lausanne,
1989).

