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ABSTRACT

Many heuristics have been developed in order to overcome the computational complexity of
job shop problems. In this research, we develop a new heuristic by selecting four simple
dispatching rules, i.e., SPT, LPT, SR and LR, dynamically as scheduling proceeds. The
selection is accomplished by using artificial neural networks. As a result of testing on 50
problems, the makespan obtained by our heuristic is, on the average, 13.0% shorter than
the longest makespan, and 0.4% shorter than the shortest makespan obtained by existing
dispatching rules.

1. INTRODUCTION

For three decades, the job shop problem has held the attention of many
researchers. The job shop problem is a production scheduling problem in which
each one of n jobs must be processed in the time sequence on m machines,
where a job consists of at most m operations. The assumptions of a job shop
problem are summarized as follows [10]:

A machine can process only one job at a time.

An operation cannot be interrupted.

The setup time for an operation is included in the processing time.
The processing order of a job is given according to this job.

The operation sequence on the machines are known.

v v.v vy

The objective of this problem is to minimize some function of the completion
times of the jobs subject to the constraints described above. In this research,
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we choose the objective of minimizing the makespan, i.e., the time needed for
processing all jobs. The job shop problem is known to be NP-hard, ie., the
time required to solve the problem to optimality increases exponentially as the
problem size increases [4]. For very small problems, complete enumeration,
branch and bound techniques or integer programming determine the optimal
schedule [3], but for larger ones, efficient heuristics are necessary to solve or
obtain near-optimal schedules [1].

Zanakis et al. [17] performed an extensive survey of journal publications on
heuristic methods and applications in 442 articles published in 37 journals from
1968 to 1986. They classified them into twelve categories. About 25% of those
articles is in the area of production and job shop scheduling. Therefore, it may
fairly be stated that the scheduling problem has drawn much attention from
many researchers, and it still is one of the most attractive problems.

In this research, we develop a new heuristic by selecting appropriate
dispatching rules dynamically as a single job shop problem is being solved. The
selection is accomplished by using artificial neural networks [8]. The structure of
this article is as follows: In section 2, we first show the performance of four
simple and popular dispatching rules, SPT, LPT, SR and LR on our randomly
generated data. Then, we present a new heuristic that dynamically selects an
appropriate dispatching rule for each operation as scheduling proceeds. In
section 3, we employ artificial neural networks (ANN’S) as means of selecting
appropriate dispatching rules. In this section, how we design, train and test the
ANN is described. The computational experiments of the trained ANN are also
presented in section 3. Finally, section 4 concludes this article.

2. DYNAMICALLY SELECTED DISPATCHING RULES

2.1 Performance of Existing Dispatching Rules

For many years, many researchers have been developing heuristic dispatching
rules for job shop problems. A comprehensive survey of those rules is provided
by Panwalkar and Iskander [11}. In our research, we choose four simple
dispatching rules, SPT(shortest processing time), LPT(longest processing time),
LR(longest remaining processing time) and SR(shortest remaining processing
time).

The performance of a dispatching rule depends heavily on the structure of
individual job shop problem. In other words, no single dispatching rule is
dominant across all kinds of job shop problems. However, since no one can
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judge which dispatching rule is suitable for a problem beforehand, many
practicians tend to stick to one or two dispatching rules without knowing
whether those dispatching rules are the best choices for their problems.

For our research, we randomly generated 50 problems with 3, 6, 9, 12 and
15 jobs, and 3, 6, 9, 12 and 15 machines, i.e., the pairs of jobs and machines
are 3X3, 6X6, 9X9, 12X12 and 15X15; the integer processing times were
randomly generated and uniformly distributed over the interval [1, 9]. We
coded the scheduling program in Prolog, and the tests were performed on a 486
personal computer with 4MB RAM and a 80487 coprocessor. All test results of
this research are presented in the Appendix. As shown in the dispatching rule
columns in the Appendix, the variation in makespans yielded by different
dispatching rules is apparent. For example, in one case of 9X9 problem Shop9-
8, the worst schedule by SPT is even 38.2% longer than the shortest schedule
by LR. Table 2.1 shows the number of the best schedules obtained by each
dispatching rule on 50 test problems. The meaning of Vari% is described in the
Appendix.

Table 2.1 Performance of Dispatching Rules by Problem Types

Job Machine SPT LPT SR LR Vari%
3 3 7 1 6 4 13.9%
6 6 3 2 4 4 13.1%
9 9 0 0 3 7 18.7%

12 12 0 0 2 8 14.7%

15 15 1 0 3 6 14.1%

Total 11 3 18 29 14.9%

As seen in Table 2.1, LR performs best, then SR, SPT and LPT in that
order. On the average of all 50 problems, the worst schedule is 14.9% longer
than the best, i.e., the shortest schedule. Therefore, it is not a good idea to
stick to one dispatching rule regardless of the structure or intrinsic nature of
the problem. In the next subsection, we describe how we can get a better
schedule by dynamically selecting the best dispatching rules as jobs are
scheduled.

2.2 Selection of Dispatching Rule for Each Operation

In this section, we describe the heuristic called the Dynamically Selected
Dispatching Rule (DSDR) developed in our research. For each operation, our
DSDR heuristic first checks to select one of the four dispatching rules, SPT,
LPT, SR and LR, that yields the best schedule, i.e., the shortest makespan.
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Then, the DSDR heuristic schedules the operations of all jobs according to the
selected dispatching rule. Let us call the machine on which more than one job
are to be scheduled in current operation the B-machine which stands for Busy
machine. The DSDR heuristic selects the best dispatching rule efficiently by
trying the four dispatching rules only on the B-machine. The DSDR heuristic
yields a schedule in the following way:

WHILE all operations are not scheduled DO
WHILE all jobs are not scheduled DO
1. Identify B-machines.
2. Schedule the jobs queued on the B_machines using SPT, LPT, SR
and LR.
3. Calculate the makespan of the resulting partial schedule.
4. Select the dispatching rule that gives the shortest makespan.
If more than two rules tie,
then select a rule in the order, LR, SR, SPT and LPT.
5. Schedule all jobs on all machines according to the selected dispatching
rule.
END WHILE (jobs)
END WHILE (operations)

As described in the above procedure, if more than two rules yield the same
values of makespan, the DSDR heuristic selects a dispatching rule in the order,
LR — SR — SPT — LPT. For example, if SPT and LPT yield the same
values of makespan, the DSDR heuristic selects SPT. The order of selection was
determined according to the performance comparison presented in Table 2.1.

The DSDR heuristic was tested on our 50 test problems. The sequence of
the selected dispatching rules, for example, for the problem Shop9-5 is ( LR,
SPT, LR, SR, LR, SPT, LR, LR, LR ), and the resulting makespan is 86
which is better than that of any individual dispatching rule. In other words,
the DSDR heuristic yields the best schedule for the problem Shop9-5. The
performance of the DSDR heuristic is also shown in the Appendix. On the
average of all 50 test problems, by the DSDR heuristic, the makespan is
decreased 13.7% from the worst makespan obtained by individual dispatching
rules, and 1.2% from the best makespan obtained by individual dispatching
rules. Therefore, it may be stated that the DSDR heuristic performs as good as
the best dispatching rule among SPT, LPT, SR and LR does.

The DSDR heuristic, however, does not always yield the best schedules.
Out of 50 problems, the number of cases when the DSDR schedules are the
shortest is 40; the number of cases when the DSDR. schedules are at least the
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Table 2.2 Performance of DSDR Heuristic by Problem Types

Job  Machine SPT IPT SR LR DSDR MinD% MaxD%
3 3 6 1 5 4 7 -2.3% 9.3%
6 6 2 1 2 2 8 15%  12.7%
9 9 0 0 1 5 7 05%  15.9%

12 12 0 0 1 1 9 37%  15.9%

15 15 0 0 1 3 9 26%  14.6%

Total 8 2 10 15 40 12%  13.7%

second best is 50; there is no case when the DSDR schedules are the worst.
Table 2.2 shows the number of the best schedules obtained by the four
dispatching rules and the DSDR heuristic. The meanings of MinD% and
MaxD% are described in the Appendix.

Even though we tried each dispatching rule only on the jobs queued on
B_machines, the rule selection routine in the DSDR is certainly a brute force
procedure. For each operation, the DSDR heuristic actually schedules the jobs
according to each dispatching rule, and then selects the best after comparing
the four values of makespan of resulting partial schedules. If the number of
B_machines or the number of jobs queued on B_machines increases, the
computation time of the DSDR heuristic will increase, and most of the
computation time will be spent on the rule selection routine. To overcome this
inefficiency, we will employ artificial neural networks (ANN’S) for selecting
appropriate dispatching rules. This subject is discussed in the next section.

3. EMPLOYMENT OF ANN FOR DISPATCHING RULE SELECTION

3.1 Artificial Intelligence Application in Scheduling Problem

The artificial intelligence (AI) techniques used in scheduling problems are
mainly in the category of rule-based inference, i.e., expert systems [16]. Expert
systems for scheduling problems are found, e.g., in [6, 7, 9, 12, 14]. Since they
are rule-based expert systems, the knowledge about scheduling must be
represented in IF-THEN form. However, one of the main disadvantages of
expert systems approach is the difficulty in knowledge acquisition let alone the
fact that the knowledge represented in IF-THEN form is very inflexible.
Representing the heuristic knowledge of complex scheduling problem in
IF-THEN form is a very complicated and difficult task. Therefore, we chose the
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ANN technique to extract the heuristic knowledge, even though the knowledge
acquired in ANN is not explicit.

The research presented in this paper is in the category of Machine
Learning. Machine Learning is the most recent application of AI techniques in
scheduling problems. Arizono et al [2] developed a heuristic for a single
machine scheduling problem by using the Gaussian machine model which is one
of the stochastic neural network models. They tested their heuristic on 50
problems, each consists of 10 jobs and a single machine. The result was that
the average approximate rate of obtained schedules to optimal solutions was
0.9. Kadaba et al [5] developed XROUTE, a software system that yields
near-optimal results for vehicle routing and scheduling problems. They tested
their system on 25 randomly generated problems and compared the solutions
with those obtained by four existing heuristics. The computational results
showed that, in all 25 problems, XROUTE yielded the best solutions. Shaw et
al. [15] developed a scheduling approach called PDS (Pattern-Directed
Scheduling) based on the inductive learning process called ID3 algorithm [13].
They tested the PDS approach on 69 different settings of manufacturing
pattern. The number of cases when the PDS solutions were worse than the best
solutions obtained by dispatching rules was 10.

3.2 Artificial Neural Network as Dispatching Rule Selector

As discussed in section 2.2, by dynamically selecting the best dispatching rules,
ie., by the DSDR heuristic, we can obtain better schedules. However, the
DSDR heuristic certainly takes longer than individual dispatching rule. After
having examined the rule selection patterns in the DSDR heuristic, we found
that there must be some structure in a partial schedule that lends itself to fit
for a certain dispatching rule. In other words, there must be some relationship
between a partial schedule and the best dispatching rule for the jobs to be
scheduled in the next operation. We employed an ANN approach to extract
that relationship. We shall call this ANN the ANN-DRS (Artificial Neural
Network as Dispatching Rule Selector). We designed three ANN_DRS’s, ie.,
ANN_DRS3, ANN_DRS4 and ANN_DRS5. ANN_DRS3 is for the case when
the number of jobs queued on B-_machine is three. The other two ANN_DRS’s
are for the cases when the number is four and five, respectively.

In this section, we explain the structure of ANN_DRS3 and how we
trained and tested it. The other two ANN_DRS’s can be explained in the same
manner. The input values for ANN_DRS3 are determined as follows. For
operation K, a job J to be scheduled on a B_machine can be represented by
three values as follows:
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» J; : The time when the (K— 1)* operation of the job J is finished.

» J, : The processing time of the K™ operation of the job J.

» J, : The remaining processing time of the job J.
The status of the B_machine M is represented by a single value as follows:

» M,: The available point of time of machine M, i.e., the latest finish-

ing time of the (K—1)" operation of any job on machine M.

The data for input layer for training and testing the ANN_DRS3 are generated
as follows:

» Let us denote [, the value of J; of the i job. Ja is randomly
generated from interval [ 1, 150 |. Jp is from interval [ [, Ju+20 ],
and Jg is from interval [ J,, Jp+20 |. Al J,’s are integers.

» Let us denote J, the average value of Jz’s. M, is integer and

randomly generated from interval [ J,—20, J,+20 ].
» J,’s are integer and randomly generated from interval [ 1, 9 ].

» J,’s are not generated. Only the order of jobs, i.e., [, , with respect

to the remaining processing time is randomly generated.

The input layer of ANN_DRS3 consists of ten Processing Elements (PE’s),
i.e.,, nine PE’s for representing three jobs and one PE for B_machine. The
output layer consists of four PE’s, each represents the selection decision of
single dispatching rule. If SPT is selected, the data for the output layer is a
set of four numbers, (1,0,0,0); LPT, (0,1,0,0); SR, (0,0,1,0); LR, (0,0,0,1). The
data for output layer is obtained by actually performing the DSDR heuristic
with the data for input layer. The number of PE’s in hidden layer is set to
six. The transfer function of the input layer is linear. The transfer functions of
the hidden and the output layer are Sigmoid functions. The learning process is
performed using backpropagation algorithm. The structure of ANN_DRS3 is
depicted in Figure 3.1.

We generated 100 pairs of data, i.e., input data and the matching output
data, for each ANN_DRS. Among these data, 70 pairs were used for training,
and 30 pairs were used for testing the ANN_DRS. Table 3.1 shows the
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Figure 3.1 Structure of ANN_DRS3

accuracy rate of the trained ANN_DRS’s for various settings of training times.
For example, after we trained the ANN_DRS3 for 40000 times, the trained
ANN.DRS3 selected the best dispatching rules with full accuracy for the 70
pairs of training data. However, for the 30 pairs of test, i.e., holdout data, it
selected the best dispatching rules with the accuracy rate of 90%. The
bold-faced figures represent the accuracy rates of the selected ANN_DRS’s. For
example, for ANN_DRS3, the network trained for 30000 times was selected.

Table 3.1 Accuracy Rate of ANN_DRS’s under Various Training Times

Training ANN_DRS3 ANN_DRS4 ANN_DRS5
Time Train(%) Test(%) | Train(%) Test(%) | Train(%) Test(%)
20000 99 90 89 82 86 72
25000 100 89 90 84 89 72
30000 100 ) 01 81 89 69
35000 100 90 86 85 90 71
40000 100 90 88 84 90 70

As shown in Table 3.1, the performances of the trained ANN_DRS’s are
acceptable. However, the performance of the trained ANN_DRS is getting worse
as the number of jobs queued on B-machine increases. It implies that the
lookahead capability of ANN_DRS is diminishing as the number of jobs to be
scheduled increases.
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4. DISPATCHING RULES SELECTED BY ARTIFICIAL NEURAL NETWORKS

By incorporating ANN_DRS3, ANN_DRS4, ANN _DRS5 into one procedure, we
develop a new heuristic which we shall call DRANN (Dispatching Rules
selected by Artificial Neural Networks). For each operation, the DRANN
heuristic first checks each machine whether there are any jobs to be scheduled,
l.e., queued jobs. The DRANN heuristic consists of several scheduling routines
each of which is activated depending on the number of queued jobs.

If there are two queued jobs, then schedule them using a simple rule such
as SPT. If there are three, four or five queued jobs, then select a dispatching
rule using ANN_DRS’s and schedule them according to the selected dispatching
rule. If there are more than five queued jobs, first sort them in the descending
order of remaining processing time. Then for the first three jobs, select a
dispatching rule using ANN_DRS3 and schedule them according to the selected
dispatching rule. With the remaining queued jobs, the DRANN heuristic
performs an appropriate scheduling routine all over again. This procedure
continues until all operations are scheduled.

The performances of the DRANN heuristic on our 50 test problems are
also shown in the Appendix. The results shown in the Appendix indicate that
the DRANN heuristic performs as good as the DSDR heuristic does. Table 4.1
shows the performance of the DRANN compared to the DSDR. Inc% and
Dev% of each problem type are calculated as follows:

T : Set of problem types, i.e., T = { 3X3, 6x6, 9x9, 12x12, 15X15 }
I : Set of problem numbers, ie, [ = {1,2,3,4,5,6,7, 8,9, 10}

1 DRANN,— DSDR;
o — _d_
Inc% = 14 ; DSDR, X 100, teT
1 | DRANN;— DSDR, |
o/ — L
Dev% - DSDR * 100, teT
Table 4.1 Performance of DRANN Compared to DSDR by Problem Types
Job Machine Inc% Dev%
3 3 -0.2% 4.5%
6 6 1.0% 3.0%
9 9 1.0% 3.3%
12 12 1.0% 3.0%
15 15 1.9% 4.6%
Average 0.9% 3.7%
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As shown in Table 4.1, the DRANN makespan is, on the average of each
problem type, slightly longer than, but within the range of 5% of the DSDR
makespan. However, since the DRANN heuristic employs ANN for selecting
dispatching rules, it takes much shorter than the DSDR heuristic to finish
scheduling.

The comparisons of computation times of DSDR and DRANN for each type
of problems are presented in Table 4.2. In order to differentiate the
computation times of the two procedures more vividly, they were measured
using 33 MHz 386 PC with 80387 Coprocessor, i.e., a slower machine.

Table 4.2 Comparisons of Computation Times of DSDR and DRANN

unit : seconds

Type 3x3 6Xx6 9Xx9 12X12 15X 15
Number DSDR | DRANN| DSDR | DRANN| DSDR |DRANN| DSDR |DRANN| DSDR | DRANN
1 0.61 0.21 1.64 0.38 4.28 0.93 9.17 2.36 19.85 3.65
2 0.44 0.01 1.81 0.61 5.32 1.01 10.07 2.12 19.46 3.42
3 0.39 0.11 1.76 0.59 4.89 1.39 11.97 2.47 18.82 3.95
4 0.44 0.11 1.55 0.38 4.44 1.17 11.15 2.44 22.11 4.11
5 043 0.12 2.03 0.59 5.34 1.11 9.07 2.34 24.09 4.09
6 0.38 0.11 1.80 0.55 4.24 1.00 10.25 2.15 21.78 3.73
7 0.49 0.06 1.86 0.31 4.19 1.15 13.16 2.62 20.07 3.30
8 0.50 0.16 1.85 0.65 5.17 1.30 11.95 2.44 20.48 4.73
9 0.38 0.10 1.92 0.60 5.07 1.30 10.73 2.36 20.24 4.09
10 0.37 0.05 2.02 0.72 5.00 1.60 9.52 2.40 22.33 411
Average 0.44 0.10 1.82 0.54 4.79 1.20 10.70 2.37 20.92 3.92

As shown in Table 4.2, the computation time of DRANN is much shorter
than that of DSDR. On the average, the computation time of DRANN is 24%
of that of DSDR.

Both of the DSDR and the DRANN heuristics consist of two parts: One
part is to select an appropriate dispatching rule, and the other part is to
schedule the jobs according to the selected dispatching rule. Table 4.3 and
Table 4.4 show the times spent on the selecting part and the scheduling part
of the DSDR and the DRANN heuristics, respectively.
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Table 4.3 DSDR Procedure : Time spent on Selection and Scheduling*
unit : seconds
Type 3x3 6X6 9x9 12x12 15x15
Number Select | Schedule| Select | Schedule| Select | Schedule| Select |Schedule| Select | Schedule
1 0.49 0.12 1.30 0.34 3.01 1.27 6.37 2.80 12.30 7.55
2 0.38 0.06 1.42 0.39 3.84 1.48 7.04 3.03 11.70 7.76
3 0.28 0.11 1.43 0.33 3.50 1.39 8.02 3.95 11.24 7.58
4 0.32 0.12 1.01 0.54 3.08 1.36 7.81 3.4 14.46 7.65
5 0.37 0.06 1.63 0.40 4.12 1.22 6.26 2.81 16.17 7.92
6 0.33 0.05 1.36 0.44 2.97 1.27 6.64 3.61 14.72 7.06
7 0.44 0.05 1.49 0.37 3.03 1.16 8.72 4.44 12.29 7.78
8 0.44 0.06 1.43 0.42 3.79 1.38 8.06 3.89 13.90 6.58
9 0.32 0.06 1.43 0.49 3.75 1.32 7.42 3.31 12.82 7.42
10 0.22 0.15 1.52 0.50 3.73 1.27 6.72 2.80 13.49 8.84
Average 0.36 0.08 1.40 0.42 3.48 1.31 7.04 3.40 13.31 7.61
Table 4.4 DRANN Procedure : Time spent on Selection and Scheduling*
unit : seconds
Type 3X3 6X6 g9x9 12X12 15X 15
Number Select | Schedule{ Select |Schedule| Select |Schedule| Select |[Schedule| Select | Schedule
1 0.11 0.10 0.05 0.33 0.17 0.76 0.99 1.37 1.22 2.43
2 0.00 0.01 0.11 0.50 0.38 0.63 1.04 1.08 1.12 2.30
3 0.00 0.11 0.22 0.37 0.60 0.79 0.99 1.48 1.31 2.64
4 0.00 0.11 0.11 0.27 0.39 0.78 1.05 1.39 1.38 2.73
5 0.00 0.12 0.22 0.37 0.38 0.73 0.84 1.50 1.71 2.38
6 0.00 0.11 0.33 0.22 0.44 0.56 0.93 1.22 1.23 2.50
7 0.00 0.06 0.11 0.20 0.50 0.65 0.93 1.69 1.04 2.26
8 0.11 0.05 0.22 0.43 0.56 0.74 1.03 1.41 1.77 2.96
9 0.00 0.10 0.22 0.38 0.44 0.86 0.77 1.59 1.25 2.84
10 0.00 0.05 0.22 0.50 0.87 0.73 0.92 1.48 1.42 2.69
Average 0.02 0.08 0.18 0.36 0.47 0.73 0.95 1.42 1.35 2.57

* Select : Time spent on selection of dispatching rule

Schedule : Time spent on scheduling
Select + Schedule gives the total time shown in Table 4.2.

As we have expected, most of the DSDR computation time was spent on
the selecting part. On the average, 72.49% of the computation time was spent
on the selecting part. For the DRANN heuristic, however, 33.40% of the
computation time was spent on the selecting part.
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5. CONCLUSION

In order to smooth out the variation among the makespans obtained by the
four simple dispatching rules, i.e., SPT, LPT, SR and LR, we develop a new
heuristic in which one of the four dispatching rules is selected and used,
operation by operation, according to the structure of the individual job shop
problem. The procedure of dispatching rule selection must be very time-
consuming if we perform actual scheduling to select the best dispatching rule.
In this research, however, we successfully incorporate the dispatching rule
selection procedure in our heuristic minimally affecting the overall computation
time by using artificial neural networks.

The performance of our heuristic is quite acceptable. As a result of testing
on 50 randomly generated problems, the makespan obtained by our heuristic is,
on the average, 0.4% shorter than the shortest makespan, and 13.0% shorter
than the longest makespan obtained by the four dispatching rules. In this
research, we showed that better makespan can be obtained by using several
dispatching rules in solving a single job shop problem. There are so many
dispatching rules, and the combination of dispatching rules must be limitless.
Therefore, there may be another combination of dispatching rules that yields
better makespan than our heuristic does. The structure of ANN may also be
designed differently. In particular, we set the number of PE’s in hidden layer
to six. However, by varying the number of PE’s in hidden layer, we could
design an ANN that yields better accuracy rates. We leave these subjects for
further research.
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Appendix
SPT LPT SR LR DSDR DRANN

Vari% MaxD% MinDx MaxD%
Shop3_1 28 31 28 31 10, 31 7% 0.0% 28 0.0 9.7%
Shop3_2 27 30 34 30 25, 27 0% 20.6% 27 0.0% 20.6%
Shop3_3 25 24 25 24 4, 24 0% 4.0% 25  -4.2%  0.0%
Shop3_4 32 33 32 33 3, 31 A% 6.1% 32 0.06 3.0%
Shop3_5 28 29 28 29 3, 29 6% 0.0% 28 0.0 3.4%
Shop3_6 22 23 22 23 4, 22 J0%  4,3% 22 0.05 4.3%
Shop3_7 29 30 27 22 36 22 0% 26.7% 22 0.0% 26.7%
Shop3_8 46 46 37 35 31, 35 0% 23.9 40 -14.3% 13.0%
Shop3_9 25 27 25 25 8. 25 0% 7.4% 25 0.0 7.4%
Shop3_10 26 29 26 29 11, 29 -11.5%  0.0% 26 0.0% 10.3%
Average  28.8 30.2 28.4 28.1 13 27.5 .3% 9.3% 27.5 -1.8% 9.9%
Shop6_1 72 8 70 8 21, 64 8.6% 7% 66 5.7% 22.4%
Shop6_2 5 63 59 57 10, 54 5, 3% 3% 55 3.5% 12.7%
Shop6_3 65 70 65 58  20. 58 0. 0% 1% 54 6.9% 22.9%
Shop6_4 50 52 50 57  14.( 50 0.0% 3% 50 0.0% 12.3%
Shop6_5 64 58 64 59 10, 57 1.7% .9% 50  -1.7% 7.8%
Shopb_6 53 52 54 50 8. 50 0. 0% 4% 54 -8.0%  0.0%
Shop6_7 47 47 52 48 10, 48  -2.1% 7% 48  -2.1%  7.7%
Shop6_8 76 83 76 83 9, 74 2.6% 73 3.9%  12.0%
Shop6_9 65 65 60 58 12, 56 3. 4% 58 0.0 10.8%
Shop6_10 72 71 63 66 14, 66  -4.8% 65 -3.2% 9.7%
Average  62.3 64.6 61.3 62.1 13 57.7 1.5% 58.2 0.5% 11.8%
Shop9_1 92 98 88 96 11.4% 85 3.4% ) 79 10.2% 19.4%
Shop9_2 101 112 105 94  19.1% 9% -2.1% . 3% 101 -7.4%  9.8%
Shop9_3 110 118 115 100 18.0% 100 0. 0% 3% g7 3.0% 17.8%
Shop9_4 7 77 8 T4 14.9% 77 -4.1% 4% 78  -5.4%  8.2%
Shop9_5 99 107 98 91  17.6% 86 5.5% 6% 88 3.3% 17.8%
Shop9_6 95 82 94 80  18.8% 78 2.5% .9% 82  -2.5% 13.7%
Shop9_7 8 92 97 84  15.5% 84 0. 0% 4% 85  -1.2% 12.4%
Shop9_8 105 96 100 76  38.2% 76 0. 0% .6% 80  -5.3% 23.8%
Shop9_9 97 93 87 91  11.5% 82 5. 7% 5% 83 4.6% 14.4%
Shop9_ 10 134 123 110 122 21.8% 117  -6.4% 7% 115  -4.5% 14.2%
Average  99.9 99.8 97.9 90.8 18.7% 88.1 88.8 15.1%

Vari% = (Longest DR Makespan - Shortest DR Makespan) / Shortest DR Makespan X 100%

MinD% = (Shortest DR Makespan - Our Heuristic Makespan) / Shortest DR Makespan X 100%

MaxD#% = (Longest DR Makespan - Our Heuristic Makespan) / Longest DR Makespan X 100%
where DR is Dispatching Rule, Our Heuristic is DSDR or DRANN,
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Appendix(continued)
SPT LPT SR LR "DSDR DRANN

Vari%s MinDs  MaxDw% MinD%  MaxD%
Shopl2_1 148 159 136 155 16.9% 116 14.7%  27.0% 121 11,08  23.9%
Shopl2_2 132 124 129 118 11.9% 118 0.0% 10.6% 112 5.1% 15.2%
Shopl2_3 167 168 173 155 11.6% 151 2.6 12.7% 152 1.9% 12.1%
Shopl2_4 131 129 144 128 12.5% 116 9.4% 19.4% 123 3.9 14.6%
Shopl2_5 136 140 140 130 7.7% 128 1.5% 8.6% 127 2.3% 9.3%
Shopl2_6 137 150 145 132 13. 6% 131 \5.8% 12.7% 133 -0.8% 11.3%
Shopl2_7 160 154 147 132 21.2% 127 3.8 20.6% 129 2.3% 19.4%
Shopl2_8 125 142 121 133 17.4% 125 -3.3%  12.0% 120 0.8% 15.5%
Shop12_9 147 138 141 130 13.1% 123 5.4% 16.3% 125 3.8% 15.0%
Shopl2_ 10 144 139 124 119 21.0% 116 2.5% 19.4% 121 -1.7% 16.0%
Average 142.7 144.3 140 133.2 14.7% 125.1 3.7% 15.9% 126.3 2.9% 15.2%
Shopl5_1 161 165 151 145 13.8% 146 -0.7% 11.5% 137 5.5% 17.0%
Shopl5_2 194 177 172 175 12.8% 162 5.8 16.5% 159 7.6% 18.0%
Shopl5_3 179 185 170 163 13.5% 162 0.6% 12.4% 154 5.5% 16.8%
Shopl5_4 205 201 200 174 17.8% 174 0.0% 15.1% 182 -4,.6% 11.2% -
Shopl5_5 167 198 172 161 23.0% 161 0.0% 18.7% 172 -6.8% 13.1%
Shopl5_6 161 189 164 166 17, 4% 158 1. 94 16. 4% 163 -1.2%  13.8%
Shopl5_7 170 170 169 156 9. 0% 150 3.8% 11.8% 159 -1.9% 6.5%
Shopl5_8 183 187 179 177 5.6% 159 10.2%  15.0% 167 5.6% 10.7%
Shopl5_9 162 156 146 156 11.0% 146 0.0% 9.9% 156 -6.8% 3.7%
Shopl5_10 187 174 159 163 17.6% 152 4.4% 18.7% 151 5.0 19.3%
Average 176.9 180.2 168.2 163.6 14.1% 157 2.6 14.6% 160 0.8 13.0%
Vari% = (Longest DR Makespan - Shortest DR Makespan) / Shortest DR Makespan X 100%
MinD% = (Shortest DR Makespan - Our Heuristic Makespan) / Shortest DR Makespan X 100%
MaxD% = (Longest DR Makespan - Our Heuristic Makespan) / Longest DR Makespan X 100%

where DR is Dispatching Rule, Our Heuristic is DSDR or DRANN.



