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Ka
(M+Pic)-) 아g+H”g = (M+HPiS)«

M當+Pic 舛+H咬=(M+ H Pic )org

Kd
M+叫+Pic=q - (M+Pic )org

Here, Ka (stability constant)^ (extraction constant)/^ 
(distribution constant) and AAG=AG (ho아 (host
la)= - RT In^XleV^Cla)}. Since the distribution 
constant (&) must be identical under the same 
extraction conditions except the host (0.2 mM), Ka(le)/ 
K.(la)=Ke(le)/K(la) and thus AAG=-RT In [Ke(le)/Ke 
(la)], where ^e=[M+ • H ■ Pic ~ ]org/[M+]ai?[Pic " ]a9[H]org at 
equilibrium. Therefore, the cation-n interaction in the 
host le is -0.29 (Na+), —0.35 (K+), -0.28 (Rb+), and 
一 0.24 kcal/mol (Cs+), respectively. The same 
treatments can be applied in the other ho아s.
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The Yang reaction,1 which produces cyclic alcohols via 
intramolecular hydrogen abstraction by excited ketones, has 
received a lot of attentions in both synthetic2 and mechanis­
tic3 aspects. Since it can give diastereomeric mixtures of the 
cyclic alcohols, many recent studies on the reaction have 
been oriented toward understanding the factors controlling 
diastereoselectivities in the photocyclization of various 
ketones.4 Recently Wagner has studied several ketones to 
give 1,5-biradical intermediates which then couple to form 
cyclic alkanols in varied diastereomeric ratios.5 The results 
have been analyzed in terms of conformational preference옹 

that pre-exist in the biradicals and entropic factors related to 
intersystem crossing during the product formation. One sys­
tem that they have looked at is o-alkoxybenzophenone, 
among which o-ethoxybenzophenone, 1, gives di­
astereomeric dihydrobenzofuranols in an 11:1 Z/E ratio in 
benzene. In our lab, we have recently investigated the pho­
toreactivity of o-2,2,2-trifluoroethoxybenzophenone, 2, 
which is structurally related to 1, and found a strikingly dif­
ferent ratio in the diastereomeric dihydrobenzofuranols. The 
result is described below (Scheme 1).

The starting ketone was prepared by stirring o-hy- 
droxybenzophenone (1 eq.) and potassium carbonate (1.5 
eq.) with excess amounts of 2,2,2-trifluoroethyliodide (3 eq.) 
in DMF at 40 °C. After purification by column chro­
matography over silica gel using hexane and ethyl acetate

1： R = CH3 z e
2: R = CF3

Scheme 1.

(10 to 1) as eluents, an oily product was obtained in 65% 
yield.7 The ketone was dissolved into 0.5 ml of benzene-d6 
and transfered to an NMR tube (0.2 M). After degassing by 
bubbling argon through for 10 minutes, the sample was sub­
jected to photolysis using a Hanovia 450 W medium pres­
sure mercury lamp with a Pyrex filter. After 50 minute ir­
radiation, the reaction was completed and the formation of 
two isomeric products was apparent from its NMR spec­
trum (Figure 1).

Each product was confirmed by the usual spectroscopic 
methods and by comparing it with that of photoproduct 
from I.8 Assignment of stereochemistry of each isomer was 
made on the basis of the same criteria used for pho­
toproducts from 1, in which the chemical shifts of groups 
cis to a phenyl were more upfield than the one trans to it.

The ratio of Z- to E-2-trifluoromethyl-3-phenyldihydro- 
benzofuran-3-ol turned out to be 2 to 1 (by NMR in-
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danol products than that of 1. The biradical would therefore 
have enough time to give the photoproducts more or less to­
wards thermally equilibrated ratios. We are currently in­
vestigating the photochemical cyclization of several analo­
gues of 2 to obtain further insights of this reaction mechan­
ism.

In summary, the Yang reaction of 2 shows a remarkably 
different diastereoselectivity from that of 1. The result has 
been explained by an unique menifestation of captodative ef­
fect of the biradical intermediate.
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